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Abstract

Information security is gaining more and better attention from the
embedded systems community. It is now widely acknowledged that
security and safety are intrinsically tied and may not be torn apart
during the design process. embedded systems often sustain a criti-
cal infrastructure which is exposed to accidental as well as malicious
faults. Acts of vandalism, terrorism, sabotage, or crime pose seri-
ous threats to a system’s correct operation. In the face of pervasive
computing embedded systems play a major role in distributing the
computational power of modern microprocessors to business, trans-
portation, governments, public space, and even households. Besides
the benefits of this progress, the reverse side is that people may have
different intentions and motivations to use the systems. By specify-
ing security threats and counter measures during the system design it
must be guaranteed that the embedded system may be utilized only
in the way the designer intended, the user requires, and within the
boundaries of regulations and legal obligations of the deployment
area This report gives an introduction to information security un-
der the aspect of embedded systems. It explains some general se-
curity measures, summarizes cryptography and trusted computing,
and points out the concepts of intrusion tolerance.

Keywords: Security, Embedded Systems, cryptography, Trusted Computing,
intrusion tolerance.



CONTENTS v

Contents

1 Introduction 1
1.1 Definitions of Security . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Embedded Systems Security 6
2.1 Attacks on Embedded Systems . . . . . . . . . . . . . . . . . 6
2.2 Design challenges for Embedded Systems . . . . . . . . . . . 8
2.3 Security Applications in Embedded Systems . . . . . . . . . 9

3 Common Security Techniques 11
3.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Intrusion detection . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Virtual Private Networks (VPN) . . . . . . . . . . . . . . . . . 15

4 Cryptography 17
4.1 Cryptanalysis and Security of Ciphers . . . . . . . . . . . . . 18

4.1.1 Threat models and attack modes . . . . . . . . . . . . 19
4.2 Symmetric Cryptography . . . . . . . . . . . . . . . . . . . . 21
4.3 Asymmetric Cryptography . . . . . . . . . . . . . . . . . . . 22

4.3.1 RSA Algorithm . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Elliptic Curve Cryptography (ECC) . . . . . . . . . . 24

4.4 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Trusted Computing Platform (TCP) 28
5.1 Goals of the TCG . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 TPM Specification Overview . . . . . . . . . . . . . . . . . . . 29
5.3 Related projects and implementations . . . . . . . . . . . . . 31

6 Physical Security 33
6.1 Tamper resistance . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Hardware measures . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Side–Channel Attacks . . . . . . . . . . . . . . . . . . . . . . 35

6.3.1 Power Analysis . . . . . . . . . . . . . . . . . . . . . . 36

7 Information Security Economics 39
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Security Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Vulnerability markets . . . . . . . . . . . . . . . . . . . . . . . 40



CONTENTS vi

8 References 42

A Security Standards and Documents Overview 50
A.1 International Standardization Organization (ISO) . . . . . . 50
A.2 Bundesamt für Sicherheit in der Informationstechnik . . . . 50
A.3 Austria Secure Information Technology Center (A–SIT) . . . 51
A.4 Instrumentation, Systems, and Automation Society (ISA) . . 52
A.5 FIPS 140-2: Security Requirements for Cryptographic Mod-

ules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.6 Information Security Forum (ISF) . . . . . . . . . . . . . . . . 53
A.7 Common Criteria (CC) . . . . . . . . . . . . . . . . . . . . . . 53

B Primality Testing 55

C Chipset manufacturers and TPM functionality 57

D Acknowledgements 59

Index 60



LIST OF FIGURES vii

List of Figures

1 Relationship between dependability and security after Avižienis
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1 Introduction

With the raise of information processing technologies, digital data pro-
cessing is penetrating many areas of everyday life and carrying out cru-
cial duties and responsibilities. To guarantee the smooth operation, safety
and security measures must deliver a correct and sound service. The im-
portance and demand for information security is increasing equally to the
demand for digital control.

In contrast to general–purpose computers, embedded systems are de-
signed to perform a certain task. The term ’embedded’ implies that their
operation is transparent for the user, who can be completely unaware of
their deployment. Embedded systems emerge from the field of control
engineering and are now deployed in many areas like transportation, in-
dustry, communication, economy, infrastructure, etc. In order to achieve
their goal, embedded systems have to act in an intelligent manner.

An IT system’s asset is the value of its service to its users. This can be,
e.g., a database serving some precious information. To protect this asset
the database’s information must be kept secret, thus, it requires confiden-
tiality. With embedded systems this is different, because the information
has usually either short lifetime before it is consumed, or can be collected
by everyone from the environment. The important thing is the functioning
of the embedded system. Thus, an embedded system’s asset is to deliver
an efficient and dependable service. This poses requirements on availabil-
ity and integrity. Together, these three attributes form security [85].

Until today the embedded system design process focuses on achieving
the attributes associated with dependability, but neglects the demand for
security. Recently, the security requirements of embedded systems started
to gain more attention by the scientific community. This is due to the
achievements of pervasive computing, e.g., in the western world nearly
everybody is carrying a cellular phone and thus a computer, the ambitious
efforts to establish a digital marketplace, the emerging of an infotainment
culture, . . . Governments grasp embedded systems as a means to enforce
regulations and legal obligations, e.g., the digital tachograph system, pub-
lic surveillance, . . . In the industrial field, a unifying network will merge
enterprise level, information level, control level, and field level networks,
catchword IP instrumentation [58]. Among many more, these topics open
new challenges and raise new issues concerning security.

This report investigates the state–of–the–art of information security in
embedded systems. It highlights some current threat scenarios and lists
countermeasures based on the special properties of embedded systems. It
gives an introduction to cryptography, its security properties, and its com-
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putation on limited devices. Furthermore, the concepts of trusted comput-
ing are discussed and the physical security properties of embedded de-
vices are presented. Next, the concept of intrusion tolerance is explained
and, finally, some ideas on the economics of security can be found the last
section.

1.1 Definitions of Security

The term ’information security’ means protecting information and information
systems from unauthorized access, use, disclosure, disruption, modification, or
destruction in order to provide three core principles: confidentiality, integrity and
availability.”1

• Confidentiality: The assets are accessible for reading, copying, locat-
ing only by authorized parties. If secrecy is not maintained, the
computer system is susceptible to unauthorized disclosure of data
or unauthorized access to its programs.

• Integrity: The modification (writing, changing, changing status, delet-
ing creating) of an asset requires authorization. The integrity require-
ment does not hold, when an unauthorized user or program may
modify data or damage the system.

• Availability: Authorized parties can access the assets in the manner
specified and during the periods specified. Lack of availability re-
sults in a denial–of–service.

In Figure 1 Avižienis et al. [85] give a definition of security and de-
pendability in the light of their shared and distinct attributes. Security is
the concurrent existence of availability for authorized users only, confiden-
tiality, and integrity regarding unauthorized manipulations of the system
state. Authorization is the right or permission to use a system resource. A
security policy is a definition what is secure and thus admissible, and which
behavior is considered insecure and therefore prohibited.

Secondary attributes to security are composites of primary ones, i.e.,
they share the properties of two or more primary attributes to a certain
degree. They include:

• Accountability: availability and integrity of the person who performed
an action.

1U.S. code collection, Title 44, Chapter 35, Subchapter III, Â§ 3542
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Figure 1: Relationship between dependability and security after Avižienis et al.

• Authenticity: integrity of a message content and origin, eventually
including other types of information, e.g., time.

• Non–Repudiability: availability and integrity of the identity of a par-
ticipant in the communication. The goal is it to provide irrefutable
proof of an action in the system to a third party.

1.2 Terminology

A basic terminology for security and dependability was developed during
the MAFTIA project [66]. The cited document relates security breaches to
the fault model described in [85]. It defines the causal triple fault–error–
failure as follows:

• fault: adjudged or hypothesized cause of an error.

• error: part of the system state which may cause a subsequent failure.

• failure: occurs when the error reaches the service interface and the
delivered service deviates from implementing its function.

fault error failure

Figure 2: Fault model after [85].

This causality chain is as well depicted in Figure 3. The dotted line
demarcates the fault containment region FCR, which is defined as ”the set
of subsystems that share one or more common resources and may be affected by a
single fault” [52].
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intrusion error failurevulnerability
attack

hacker, 
designer,

or operator

Figure 3: Intrusion model after [66].

An attack is is an attempt to to exploit a weakness or vulnerability in
the system in order to perform an unauthorized action. A succesful attack
attempt results in an intrusion. Figure 4 illustrates this relationship. It fur-
ther suggests that a vulnerability can be introduced during development
or operation by hackers, operators, and designers.

• attack: a malicious interaction fault respective an intrusion attempt
which aims at deliberately violating one or more security properties.

• vulnerability: a fault deployed during operation or system design that
can be exploited to create an intrusion.

• intrusion: an externally–induced fault resulting from an attack that
can be used to alter the system state.

The intrusion–tolerance paradigm is introduced in [80]. It assumes that
systems remain to a certain extent vulnerable and that attacks on compo-
nents or sub-systems will happen and some will be successful. Its goal is it
to ensures that the overall system nevertheless remains secure and opera-
tional, with a measurable probability. This is achieved by error processing
mechanisms that make sure that a security failure is prevented.

discovery1

2 announcement

3 popularity

4 patch available

5 patch applied

risk

time

Figure 4: Vulnerability life cycle after Schneier [72].
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Schneier developed a vulnerability life cycle in [72]. Figure 4 depicts a
chart divided in five phases: In phase 1 the vulnerability have not been
discovered yet and it is dormant. Next, in phase 2 one or more persons
discovered the vulnerability and know how to make use of it, but no coun-
termeasures exist. This phase poses the highest risk for a system, because
nobody but the potential attacker knows about the vulnerability. At some
point in time, it will be announced in phase 3, either through some bug
report, scientific publication, exploit code, etc. More people know about it
and the attack might gain popularity. In the fourth phase automatic attack
tools get available and reduce the technical skills to launch an attack. Now
it should be fairly easy and the number of attack jumps up. Finally, a patch
is available and installed by the users and the attack rate decreases again
in phase 5.
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2 Embedded Systems Security

Three factors – also called the Trinity of Trouble – were identified to be the
major source of vulnerabilities [37, 48].

• Complexity: Modern software is a complex clockwork of interacting
components. With increasing functionality the code size grows as
well. This increments the likelihood of bugs and vulnerabilities. Ad-
ditionally, engineers program in unsafe languages like C and C++
where typing is rather weak and make use of insecure libraries which
offer no protection against simple attacks like buffer–overflows [60]
or dangling pointer errors.

• Extensibility: Today’s software is not a static piece of work, but con-
stantly evolving. Updates and bug fixes change the codebase, elimi-
nate existing vulnerabilities, and maybe open new ones. The article
in [36] discusses the implications of patching software on security.
Moreover, many operating systems for embedded systems support
dynamically loadable device drivers and modules. Bugs shipped
with these extensions may render the whole system vulnerable.

• Connectivity and remote usage of embedded devices increase their
usability and open an incredible variety of possible applications, but
unfortunately also give rise to network induced vulnerabilities. An
attacker does not have to physically possess the embedded device,
but can mount a remote attack. Furthermore, failure propagation
among similar devices can cause massive security breaches [51], since
there are more possible targets to attack, and attacks can be remotely
managed.

In the case of embedded systems, a forth factor may be added, namely
the operation in an untrusted environment. Many embedded devices have
to stay secure even under the physical possession of non–trusted parties.
Consider for example a not registered workshop for cars, loss or theft. A
malicious person could try to physically break the system cryptographic
boundary in order to access the device without permission. When embed-
ded systems are used to implement regulations such as, e.g., road–pricing,
they provide a very worthwhile target to crack.

2.1 Attacks on Embedded Systems

The paper in [70] provides an excellent overview on attacks on embedded
systems. This section gives a summary and points out the most impor-
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tant facts concerning this topic. Attacks can target either the design of
an embedded device, hence the abstract model, or the real device thus its
implementation.

Almost all known attacks on embedded systems are implementation
attacks. They target to bypass or weaken the security functions. Theo-
retically, the functional security mechanisms protecting the embedded sys-
tem may satisfy the security requirements. In practice, the adversary will
avoid a direct approach and try to circumvent the applied security mea-
sures. Functional security mechanisms must be seen in contrast to their
implementations, that offer more and new attack possibilities, which might
not be obvious during system design, when security functions are consid-
ered as ’black box’ building blocks. Hence, they are far from being com-
plete security solutions and systems designed this way uncover a broad
attack surface.

Integrity Attacks Privacy Attacks Availability Attacks

Electromagnetic 
Analysis

Power Analysis

Fault injection

Timing Analysis

Virus
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Side-Channel Attacks
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Figure 5: Attacks on Embedded Systems after [69]

Figure 5 is a reproduction of the threats listed in [69]. It divides attacks
on embedded systems in two classes, a functional classification on the one
hand, and an agent–based classification on the other hand. Functional secu-
rity mechanisms support the main attributes of security, e.g., an encryp-
tion algorithm facilitates privacy, or a (secure) hash function implements
an integrity measure.

Possible attacks are summarized in the second class. They are exe-
cuted by an agent and can threaten one or more attributes. Again, they
are broken down in three categories: Software attacks, which represent by
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far the biggest threat to all kinds of IT–systems, make use of, e.g., miscon-
figuration or buffer–overflows to run malicious code like viruses, worms,
or trojan horses. Typically, the infrastructure for software based types of
attack is much cheaper and easier to acquire compared to physical attacks.

Physical attacks and side-channel attacks directly access the device, the
board, or the embedded chips. They are either invasive, which means they
physically intrude into the device, non-invasive, like some sorts of side-
channel analysis, or a combination of both. The first category encompasses
types of attacks like reading out memories (microprobing) and listening to
inter–component communications (eavesdropping). The second category
covers simple and differential power attacks (see Section 6.3), timing at-
tacks, fault injection attacks, and electromagnetic analysis.

2.2 Design challenges for Embedded Systems

The papers in [30, 69, 48] investigate design challenges for embedded sys-
tems. Compared to standard IT–systems some gaps can be identified which
point out the reasons why applying security measures to embedded sys-
tems is a major challenge.

• The processing gap highlights that current embedded system architec-
tures are not capable of keeping up with the computational demands
of security processing.

• The battery gap emphasizes that the current energy consumption over-
head of supporting security on battery constrained embedded sys-
tems is very demanding.

• The flexibility stresses that an embedded system is often required to
execute multiple and diverse security protocols and standards.

• The tamper resistance emphasizes that secure embedded systems may
be facing an increasing number of attacks from physical to software
attacks. Side–channel attacks also represent an important threat for
these systems.

• The assurance gap is related to reliability and stresses the fact that se-
cure systems must continue to operate reliably despite attacks from
intelligent adversaries who intentionally seek out undesirable failure
modes.

• The cost of an embedded system increases with the security measures
integrated and the extra computing power needed. Taking a design
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decision in favor of security might require an additional chip and
hence increase the overall system cost.

2.3 Security Applications in Embedded Systems

On the contrary to standard IT systems, which are mostly exposed only to
remote attacks, an attacker of an embedded system mostly has the system
physically under his control. This adds physical attack scenarios (side-
channel attacks [48, 57, 75], reverse engineering, device tampering [56],
etc.) to the range of possible attacks.

These scenarios in addition to the classical challenges, the ”Trinity of
Trouble” are the reason for the big demand for security in embedded sys-
tems. Several challenges can be identified for the near future [62]. To meet
the challenges, security design must be considered right from the start.

• Software maintenance. Software is by nature ever–evolving and its
development doesn’t stand still. Because many bugs are found af-
ter shipment and requirements are changing, it has to be constantly
adapted. To enable software maintenance a mechanisms to perform
secure updates on an embedded device is mandatory. Updates and
update mechanisms are the gate through which many malicious pieces
of code try to slip on their vicious mission.

• Theft prevention: A device’s operation can be bound to an embedded
security mechanism to restrict the usage to its legal owner. A well
known–example for this is the electronic immobilizer – a remote con-
trol key for opening cars and starting the engine. This challenge is
often connected to the area of biometrics which aims at unambigu-
ously identifying individuals.

• Access control: An embedded system’s operations and data should
be protected from unauthorized access to ensure their responsible
usage. In many applications embedded systems perform mission–
critical tasks and human lives depend on their correct operation.
Thus, a protection of these systems is necessary to avert the conse-
quences of a security breach. The worst–case assumption in this case
is a nuclear power plant in the hands of a terrorist.

• Support of new business models (DRM): New business models are be-
ing introduced in the infotainment fraction. Embedded devices are
used to transport the content to the consumer and must therefore
protect the owner’s legal rights. A whole new field of business is
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currently emerging from the digital world. Security measures are a
stakeholder in the functioning of this new marketplace.

• Personalization/identification: The genuine identification of the user
supports the creation of user profiles, which can be used, e.g., to con-
figure a car’s comfort functions to a driver’s customized settings, or
to implement a logger similar to a flight data recorder (FDR), which
records the users and the utilized functions of the device.

• Legal obligations: Many embedded applications are built to support
law enforcement, for example the European tachograph system or
road pricing systems. A manipulation of such a device mostly targets
the destruction of evidences and must thus be prevented.
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3 Common Security Techniques

This section summarizes some common security techniques which can be
found in many applications.

3.1 Authentication

An authentication procedure establishes a trust relation between two prin-
cipals. One principal exhibits some sort of credentials which the other
principal checks for validity. After a successful test the first principal is
acknowledged to the second one who in return transfers some privileges
to the authenticated principal.

A well–known application of authentication is access control. An em-
bedded device is only operational after a successful authentication pro-
cedure, e.g., entering a personal identification number (PIN) when using
a cash machine or after powering a cellular phone. However, a common
misconception is that a computer confirms the identity during authenti-
cation. It is not possible to establish or prove an identity. The only thing
which can be done is to perform a test which is considered as sufficient.
Since the creation of such tests must take into account many factors like
security and usability, it is not a simple task finding an adequate one.

In the following a short authentication method overview is given:

• Kerberos (GSSAPI) [49] is based on the Needham–Schroeder Symmet-
ric Key Protocol. It includes a timestamp to fix the vulnerability of
the original protocol to replay attacks. Two principals identify them-
selves by the use of a trusted third party.

• The SSL/TLS handshake [26] is responsible for the ciphersuite nego-
tiation, the initial key exchange, and the authentication of the two
peers in the SSL/TLS protocol. It uses RSA public key cryptography
for authentication.

• SOCKSv5 [55]. This is a very simple method where a username and
password combination is sent in plaintext to a server in order to re-
quest its relay service.

• Spread spectrum TCP (SSTCP), Tailgate TCP (TGTCP), and Option–Keyed
TCP (OKTCP) [11]. Also known as port knocking, these lightweight
techniques facilitate authentication at protocol level. They make use
of protocol specific fields (like the port number field in IP packets) to
transmit some authentication code to request access.
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3.2 Firewalls

A security policy determines a computer system’s access restrictions. More
specifically it states who may access what in which manner. A firewall
enforces the access controls. From a system designer’s point of view, a
firewall is not a single device or a group of devices, but the implementation of a
security policy.

As a perimeter firewall a firewall acts as a special gateway extending a
normal gateway for communication control features. It can allow or deny
inbound or outbound communication requests and thus govern access to
a network. A policy defines how access is granted among users, which
usually consists of several rules. Message filtering has to be performed
according to these rules. In the distributed case [15], several single fire-
walls are grouped in a virtual private network (see Section 3.4) to execute
a common policy.

Figure 6: Structure of a firewall element connecting a secure and an insecure
network

The basic architecture of a firewall implementation is depicted in Fig-
ure 6. A protocol element xi arriving from an non–trusted network is
tapped and forwarded to an analysis module, which checks for validity
and authenticity or defrags several coherent elements. Based on a set of
rules forming the security policy a decision is taken, either to accept the
protocol element in the protected network or to trigger a security relevant
event.

Since an access policy can change as time goes by, it is necessary to
adjust the firewall rules. Changes can be triggered for example by adding
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a new node or a new service to the cluster, or through the occurrence of
a certain system event. An interface must be provided to reconfigure the
working rule set efficiently, secure, and without message loss.

Firewalls present an efficient tool to control access to a network, but
they also have some restrictions, one has to be aware of following threats
when deploying a firewall [10, 14]:

• Insiders are a major threat. A firewall can prevent users from outside
the network accessing it and users from the inside to leak informa-
tion, but it can do nothing about attacks carried out from inside the
network. This is only partly true for a distributed solution.

• Hidden channels are communication channels from and to the net-
work which are not monitored by the firewall. Therefore, they are
not part of the security concept.

• Restricted design: A firewall can only avert threats for which it is de-
signed. It can be vulnerable to new modes of attack.

• Malicious logic (e.g., viruses, worms) delivered within the message
body cannot be recognized by simple firewalls, because most of the
filtering is based on communication protocol elements.

• Tunneling is encapsulating one communication protocol inside an-
other one. This technique is used to transport a network protocol
through a network which would otherwise not support it, or to pro-
vide various types of a virtual private network (VPN) functionality.
It can also be used to bypass a firewall system. In this case, firewall-
blocked data is encapsulated inside a commonly allowed protocol.
Again, this is only partly true for a distributed solution.

3.3 Intrusion detection

Adopting the definition worked out during the MAFTIA [66] project, in-
trusion detection concerns the set of practices and mechanisms used towards
detecting errors that may lead to security failure, and/or diagnosing attacks.

An intrusion detection system (IDS) monitors network traffic, commu-
nication protocols, application specific protocols, system calls, or other
modifications to detect attacks. It taps the appropriate resource, e.g., net-
work and kernel, and then analyzes the gathered information in order to
recognize malicious attacks, intrusions, or security failures. Finally, it re-
ports back to the user. An intrusion prevention system (IPS) augments an IDS
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with the capability to react on certain recognized events. Figure 7 depicts
the basic block diagram of an IDS; a sensor taps a data stream, forwards
the data to an analyzing engine, which might make use of a signature
database, and a console for user interaction.

Sensor

Con-
sole

Engine
Data-
base

Data stream

Intrusion 
Detection 
System

Figure 7: Block diagram of intrusion detection system

The detection of attacks on computer systems is to perceive the dif-
ference between a system’s normal or expected behavior including error
system states and the behavior if the system is under attack. Two cate-
gories of techniques exist with which the observed system is compared:
Anomaly–detection techniques compare the observed system against normal
usage profiles and Misuse–detection techniques check for activity profiles vi-
olating the system’s security policy.

After [33], intrusion detection may be accomplished

• after the fact (post–mortem audit analysis),

• in near real–time, or

• in real–time (in support of automated countermeasures).

In a system implementing error detection and system diagnosis, it is
necessary to differentiate between random errors and malicious tamper-
ing with the system. This can be impossible, because an attacker might
launch an attack that behaves like an error, which is recognized by the di-
agnostic system as anomaly, but not detected by the IDS as a misuse. The
paper in [12] discusses a methodology for detecting accidental versus at-
tacks in sensor networks. It distinguishes a benign attack where the attacker
behaves according to the correct system’s behavior, and a malign attack that
changes the observable behavior of a system. The paper addresses solely
the latter, distinguishing the malicious or non–malicious nature of the for-
mer attack is not a computational matter.
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3.4 Virtual Private Networks (VPN)

A virtual network links its nodes in a way that the underlying physical net-
work must not correspond to the virtual connections between nodes. To
the user a virtual network appears as one large network, whereas physi-
cally it may incorporate several networks or parts of networks. Further-
more, a virtual private network (VPN) provides a privacy service for these
virtual communication lines. VPNs are mostly configured within large
public networks like the Internet, in order to virtually create local area
networks (LANs) which span large geographic areas.

Secure connections over insecure networks are implemented by wrap-
ping an insecure protocol in a secure protocol. This technique of encapsu-
lation is called tunneling. For example, the Internet Protocol’s (IP) packets
are transmitted in plaintext. By embedding an IP packet as payload data
into its secure counterpart IPSec, an regular IP connection can be made
secure transparently to the user.

The three core services a VPN must facilitate are authentication, encryp-
tion, and validation. More specifically, sender authentication is required for
access control and to counter identity spoofing, data confidentiality is op-
tional and established by encryption and blocking packet snooping and
sniffing, and, finally, message integrity measures provide validation and
mitigate message alteration.

Table 1 gives an overview of some widely used VPN protocols with
IP. Figure 8 shows the layering of a virtual network on top of a physical
network. The wiring is drawn arbitrary.

virtual node

physical node

Figure 8: Virtual network on top of a physical network.
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NAME DESCRIPTION REF.
IPSec (IP
security)

The security extension for IP. Comes in two flavors:
authentication header (AH) support sender authenti-
cation and message integrity; encapsulated security
payload (ESP) implements all three core services. It is
implemented at the transport layer in the OSI model.

[44]

OpenVPN This open source VPN is based on the SSL/TLS net-
work stack for secure communication and resides on
the application layer. The advantage of this approach
is that no radical changes have to be made to the oper-
ating system’s network stack and the SSL/TLS can be
run on virtually any client.

[28]

PPTP The Point–to–Point Tunneling Protocol was devel-
oped jointly by a number of companies, including Mi-
crosoft. Its popularity is due to the fact that is was
the first VPN shipped with Microsoft Windows and its
easy configuration.

[34]

L2TP The Layer 2 Tunneling Protocol was derived from the
PPTP protocol. It does not include encryption, but
is often used in conjunction with IPSec. A point–to–
point protocol PPP is assumed on the underlying layer.

[64]

L2TPv3 The Layer 2 Tunneling Protocol version 3 is a new re-
lease.

[54]

Table 1: Overview of VPN protocols used with IP.
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4 Cryptography

The basic terminology [4] is that cryptography is the science and art to de-
sign ciphers; cryptanalysis is the science and art of breaking them; cryptol-
ogy is the study of both. Cryptography provides the tools, which underlie
most modern security protocols. A cryptographic scheme or cryptographic
system encompasses one or more cryptographic algorithms (ciphers), pro-
tocols, data processing and storage facilities, and its users. Basically, any
computer system that involves cryptography is called a cryptosystem2.
Because of this, breaking a cryptosystem is not restricted to breaking the
underlying cryptographic algorithms. Usually it is far easier to break the
system as a whole through finding the weakest link in the system, which
is usually not the cryptography.

The ultimate goal of cryptology is hiding information from others. In
basic scenario, a sender transmits a message to a receiver and doesn’t want
anybody else to read the message. For this purpose, the relevant piece of
information is encoded by the sender with some cryptographic algorithm,
transported over a medium, and then again decoded at the receiver. To
prevent a third party to read out the message from the medium in plain-
text, but to grant access to the message’s information to the appointed
receiver, some kind of asymmetry has to be introduced between those two
kinds of parties. In most cryptographic algorithms this asymmetry is in-
troduced by some shared secret only known the sender and the receiver,
e.g., a password or a numeric key. The security of a cryptosystem thus
depends on the concealment of the secret.

Figure 9 sketches a cryptosystem’s basic principle of operation: A plain-
text is used as input for a black box cryptosystem, which then performs an
encryption operation under key1 and it yields a ciphertext as output. Con-
sequently, the ciphertext can be deciphered by a decryption operation with
key1, whose output is the input plaintext from the start.

plaintext plaintext
encryption decryption

key1 key2

ciphertext

Figure 9: Cryptosystem: Principle of Operation

2Note that in the context of cryptography, cryptosystem refers to a suite of algorithms
needed to implement a particular form of encryption and decryption.
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There are two major classes of algorithms in cryptography, namely
private-key or symmetric algorithms and public-key or asymmetric algo-
rithms. If encryption and decryption operation are performed using the
same key (key1 = key2), the operation is symmetric, if both keys are dis-
tinct (key1 6= key2), the operation is called asymmetric. An analogy for
symmetric schemes is a safe box with a lock: everybody holding the key
can open the box and deposit messages inside or retrieve messages from
the box. An asymmetric scheme extends this analogy by making a slot
in the box (hence a letter box): everybody can insert messages through the
slot in the box, but only the receiver can open the box and get his messages
out [83].

Tutorials on cryptography can be found on every corner of the Internet
and nearly every text book on security has also a chapter on cryptography
[4, 17, 18]. The classic book on cryptography is written by Bruce Schneier
[73]. The papers in [83] highlight cryptography in the context of embedded
systems.

The remainder of this chapter is organized in four chapters. Firstly,
some generic attack modes on ciphers are discussed. Next, a short intro-
duction on the two kinds of cryptography, asymmetric and symmetric, is
given. The last chapter presents some implementation issues, computa-
tion of cryptographic algorithms, and performance measurements.

4.1 Cryptanalysis and Security of Ciphers

An attack on a cryptosystem aims at revealing the concealed information
without prior knowledge of the secret key. This challenge can be met by
exploiting certain properties of the encryption or decryption operation.
Note that this section presents attacks on the cipher directly. In crypto-
graphic schemes there exist other possibilities like, e.g., power analysis
(see Section 6.3) to break the scheme. The most simple method to break a
cipher is through guessing or (randomly) probing all possible keys. This
attack mode is referred to as Brute–Force–Attack. The size of the key space
determines the worst case assumption for the number of guesses, till one
is successful. More sophisticated attacks try to narrow the key space by
eliminating some of its portions or by improving the way the guesses are
selected.

A cipher’s security can be defined as a function of the algorithm’s strength
and key length, which spans the key space. The former aspect is more im-
portant in terms of security, the latter aspect is easier to demonstrate and
hence better perceived by the public. Mounting an attack usually consists
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of two operations, generating a guess and checking it by a test. Conse-
quently, the worst case execution time is for a Brute–Force–Attack the size
of the key space multiplied by the duration of key generation plus a sub-
sequent check. Modern cryptosystems have key spaces larger than the
number of atoms in the universe3 and the computation of a Brute–Force–
Attacks could last longer than the universe’s expected lifetime4. Never-
theless longer key length can have a positive impact on a cryptosystem’s
security, the system should still remain usable; handling key sizes of some
kilobyte can be cumbersome and even insecure. Brute–Force–Attacks can
usually be highly parallelized by partitioning the key space and thus re-
duce the time spent for breaking the cipher by a constant factor. This intro-
duces a forth aspect of security, besides strength, key length, and time to
break, namely cost. This aspects relates to the cost of a machine’s computa-
tion time (acquisition cost and operating cost) and the number of machines
needed to deploy the attack. Implementations of highly parallelized dis-
tributed cracking machines range from special hardware supercomputers
on the one hand [82], to workstations connected to the Internet and or-
chestrated by software using the computer’s idle time on the other hand
[1].

So how can a cipher be kept secure? It has been widely acknowledged,
that concealing the details of the algorithm is never secure. There is no
such thing as ”security by obscurity”. The only way to assure oneself of
a cipher’s strength is to submit it for a public review process. The more
experts take a look on the cipher, the higher the probability it is secure. For
example, the new Advanced Encryption Standard (AES) has been selected
by the NIST after a three year period of public test out of five candidates.

The remainder of this chapter introduces common threat models to ci-
phers, symmetric and asymmetric cryptography, and, finally, it discusses
some performance related issues. Please note that most applications use
hybrid cryptosystems, a conjunction of both symmetric and asymmetric
cryptography in order to achieve security and performance. The latter
criteria is especially important, because the cryptosystem will fail, if it is
delaying the user from doing his work..

4.1.1 Threat models and attack modes

In Bruce Schneier’s book [73], four primary and three secondary cryptan-
alytic attack modes are distinguished:

3Which is around 1080 in the observable universe.
4Which ranges between 1060 and e1050

according to latest estimations [63].
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1. Ciphertext–only. The attacker has access to a set of ciphertexts, en-
crypted with the same cipher. His task is it to find out the corre-
sponding plaintexts, or – even better – the secret key. This is a stan-
dard scenario of an attacker eavesdropping a communication chan-
nel.

2. Known–plaintext. The attacker has access to a set of cipher texts and
their corresponding plaintexts. His task is it to find out the secret
key or an algorithm to decrypt further messages, which have been
encrypted with the same key.

3. Chosen–plaintext. The attacker has access to a set of cipher texts
and can produce their corresponding plaintexts, e.g., he has a cryp-
tographic device and can input arbitrary plaintexts and read the de-
vice’s output. His task is it to find out the secret key or an algorithm
to decrypt messages, which have been encrypted with the same key,
i.e., find a way to duplicate the device.

4. Adaptive–chosen–plaintext. This method is similar to the chosen–
plaintext attack mode, but the attacker can as well vary the subse-
quently used plaintexts based on the information from the previous
encryptions.

5. Chosen–ciphertext. The attacker has access to a set of ciphertexts,
can decrypt them without knowing the key, and retrieve the output
plaintexts. Sometimes this is called the ”lunchtime” or ”midnight”
attack, where an attacker gains access to an unattended decryption
machine.

6. Chosen–key. The attacker can make use of some knowledge about
different used keys in the cryptosystem. This is a rather uncommon
attack mode.

7. Using violence. Also called ”rubber-hose cryptanalysis”, this attack
is exploiting the human factor and addresses all methods involving
physical violence, blackmailing, kidnapping, threatening, corrupt-
ing, and taking advantage of someone. In most cases, this is the most
effective method.

Practically, a couple of attack modes are combined for attacking a cryp-
tosystem. The following example illustrates an attack on some encrypted
messages sent by a central master in a network:
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The attacker eavesdrops messages on the network. He fails to mount a
successful ciphertext–only attack. So he decides to try a chosen–ciphertext
by circumventing some authentication mechanism on the central server.
He succeeds and ends up with a set of plaintexts and ciphertexts, which
he can use again for a chosen–plaintext attack, or – if he can repeatedly
access the server — an adaptive–chosen–plaintext attack.

4.2 Symmetric Cryptography

Symmetric cryptography [53] provides the ability to securely and confi-
dentially exchange messages between two parties. As mentioned before
in symmetric cryptography one key is used to encrypt and decrypt a mes-
sage. This key represents a shared secret between the participants and
every participant has a copy of the key. The inverse encryption function
corresponds to the decryption function. There are two modes of opera-
tion, block ciphers and stream ciphers. The former take a chunk of bits for
encryption, the latter operate bit wise.

According to Shannon [77], two complementary concepts can be used
to conceal information, namely confusion, which is making each output
depend upon the key, and diffusion, which is each output depend on each
of the previous bits input. In block ciphers confusion is understood as
substitution (replacing bits), and diffusion is understood as transposition
or permutation (changing a bit’s position in the block). These functions
are implemented as so–called S–boxes and P–boxes, which are aligned and
connected in certain ways forming the cipher. The key serves as driver for
the boxes. An attacker could assemble the same arrangement of boxes, but
without knowledge of the key the boxes don’t uncover the secret.

Stream ciphers operate on a stream of digits and encode or decode each
digit depending on the current state of the algorithm. Thus, the encod-
ing of one digit depends on last encoded digit. During that process a se-
quence of pseudo-random numbers (keys) is applied to a data sequence.
This pseudo-random property makes the algorithm vulnerable to attacks.
Ideally, a stream of truly random numbers is used like proposed for the
one-time pad; but if there is no way to reproduce the key stream, there is
no way to decode the data stream. An application field for stream ciphers
are secure wireless connections, e.g., antenna Pay–TV or mobile commu-
nication.

A cryptographic mode combines a basic cipher with some sort of feed-
back or some simple operations. The modus specifies how subsequent
data blocks are processed. The security relies on the cipher whereas the
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modus should not mitigate its strength, or even cause a vulnerability. On
the other side, a well-chosen modus can improve a scheme’s security. Ta-
ble 4.2 lists some modes mainly for block and stream ciphers.

Electronic
Codebook
(ECB)

A block of plaintext has exactly one corresponding ci-
phertext. Each block of plaintext is encrypted separately.
Like in a lookup table, every input has the same output
assuming the same key.

Cipher Block
Chaining
(CBC)

A feedback loop is introduced: the plaintext of one block
is XORed with the ciphertext of the previous block. The
decryption operation works vice versa. The important
part is to choose a secure first block to start with, the
so–called Initialization Vector (IV). Two identical plain-
text messages map to two different ciphertext messages,
if two different IVs are used.

Cipher
Feedback
Modus (CFB)

This modus is very similar to the CBC mode. The cipher-
text of the previous block is fed back, encrypted again,
and XORed with the current block. Actually the plaintext
does not pass the encryption operation. Starting with an
IV, a stream of pseudo–random bits is generated which
is interweaved with the plaintext. This mode enables a
block cipher to work as a self-synchronizing stream ci-
pher.

Output
Feedback
Modus (OFB)

This mode enables a block cipher to work as a syn-
chronous stream cipher. It works similarly to the CFB
mode, but the result of the encryption operation is fed
back, not the entire ciphertext. Consequently, a stream
of infinite length could be produced. On the contrary
in CFB mode, the algorithm blocks until the result of the
XOR operation is available.

Table 2: Cyptographic modes

4.3 Asymmetric Cryptography

Contrarily to symmetric cryptography, there is no shared secret in asym-
metric cryptography [84]. The encryption is done with a key which is
publicly available. The decryption is performed with a secret private key,
which is mathematically related to the public key. The key actually used
for decryption is never transmitted over an insecure line and thus remains
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a secret. A drawback is that the computation of an asymmetric algorithm
is more resource intensive compared to a symmetric one.

The security of asymmetric cryptography is that a specific mathemati-
cally problem can be solved by someone having a hint (the key) easily, but
it is unsolvable for someone who doesn’t have the hint. In the following
some problems which are suitable for this purpose:

• The factorization of large integers is the task to compute an integer’s
prime factors. If the number is composed by large integer primes this
computation is currently unsolvable with public known algorithms.
The bottleneck operation of every known factorization algorithm is
performing primality testing (see Appendix B). If there would be a
fast method to compute prime numbers, this would break the se-
curity. of factorization–based cryptography (among several other
things).

• The discrete logarithm problem exploits the fact that there is no effi-
cient algorithm for computing discrete logarithms, while the inverse
problem of discrete exponentiation can be computed efficiently, e.g.,
by using exponentiation by squaring, for example. The discrete loga-
rithm problem applies to finite fields (Diffie–Hellman and DSA, see [27])
and to arbitrary groups, which is the motivating problem for Elliptic
Curve Cryptography (ECC).

4.3.1 RSA Algorithm

The most important operation for the RSA cipher is the modular exponen-
tiation and represents solving the equations for encryption (1) and for de-
cryption (2):

C = M e mod n (1)
M = Cd mod n (2)

p, q. . . Large primes key length
M . . . Plaintext message
C . . . Ciphertext message
e . . . Public key relativ prim zu (p− 1)(q − 1)
d . . . Private key e−1mod((p− 1)(q − 1))
n . . . Modulus n = p · q

Table 3: Components of the RSA algorithm
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Two large primes (p, q) are used to make a public-key/private-key pair
(e and d) and the modulus n. Since n is part of the public key, everybody
who can factorize n will be able to recompute d. So the security of RSA
is based on the mathematical problem of factorization. A more detailed
description of the algorithm can be found in [73].

Due to the political problems concerning cryptography in the United
States, there is no standard available from the ANSI. Nevertheless, RSA
Security, Inc., published some defacto standards addressing RSA crypto
systems.

These Public Key Cryptography Standards (PKCS) can be downloaded
from the company’s website5. Table 4.3.1 gives an overview of the different
standards. They contain a specification to build public key cryptographic
schemes, i.e., a combination of the basic RSA operation, data structures,
and a padding scheme. This is necessary to overcome different attacks
on the basic RSA operation, which might result from weak keys, chosen
plaintext, or chosen ciphertext attacks.

PKCS # 1: RSA Cryptography Standard
PKCS # 3: Diffie-Hellman Key Agreement Standard
PKCS # 5: Password-Based Cryptography Standard
PKCS # 6: Extended-Certificate Syntax Standard
PKCS # 7: Cryptographic Message Syntax Standard
PKCS # 8: Private-Key Information Syntax Standard
PKCS # 9: Selected Attribute Types
PKCS #10: Certification Request Syntax Standard
PKCS #11: Cryptographic Token Interface Standard
PKCS #12: Personal Information Exchange Syntax Standard
PKCS #13: Elliptic Curve Cryptography Standard
PKCS #15: Cryptographic Token Information Format Standard

Table 4: PKCS standards

The PKCS are as well part of other standardization initiatives, several
RFCs have been published using the PKCS as a foundation [43, 41, 42, 59].

4.3.2 Elliptic Curve Cryptography (ECC)

ECC cryptography relies on the difficulty of solving the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP), that is defined on elliptic curves over
finite fields Fm

p forming a group. They have a finite number of points,

5http://www.rsa.com

http://www.rsa.com
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and their arithmetic involves no round off error. Elements of the field Fm
p

are m–bit strings (vectors). The rules for arithmetic in Fm
p can be defined

by either polynomial representation or by optimal normal basis represen-
tation 6 Since Fm

2 operates on bit strings, its arithmetic computations are
well–suited for computers.

Scalar point multiplication is the main cryptographic operation and con-
sists of the rudimentary operations point addition and point doubling on el-
liptic curves over finite fields. The discrete logarithm problem is to com-
pute the scalar k in P = kQ (with P,Q ε Fm

p ). The elements of a group
over Fm

2 can be computed by a generating element G, a so–called genera-
tor. In a cryptosystem, parameter m defines the key length and it must be
chosen large enough (e.g., m = 163), to prevent the efficient generation of
a table of elements. By the use of an element table, the discrete logarithm
problem can be solved by a simple table lookup. An asymmetric key pair
consists of a random number k, which serves as the private key, and a
corresponding public key computed by kG.

This computational asymmetry represents the cryptographic primitive
which is used to create public–key schemes. Schemes are available for
message signature (ECDSA, ECPVS, ECNR), encryption (ECIES), and key
agreement (ECMQV, ECDH). The Standards for Efficient Cryptography
Group (SECG) published an important standard referencing EC–based al-
gorithms in [23, 24].

The smaller keys sizes used in ECC cryptography result in faster com-
putations, lower power consumption, as well as memory and bandwidth
savings.

An interesting tutorial on the mathematics of elliptic curves among lots
of other useful information can be found at Certicom’s website7.

4.4 Computation

Summarizing, the rudimentary operations executed by a CPU to compute
an asymmetric cipher are modular exponention, modular multiplication,
point addition, and point doubling. For symmetric ciphers, the atomic op-
erations are bit–shuffling for permutation or P–boxes, simple non–linear
functions for substitution or S-boxes, and linear mixing using XOR. These
operations bear the main load of cryptographic computation. Even a slight
improvement in one operation can improve a cryptosystem’s overall per-

6While optimal normal basis multiplication is less insightful than polynomial multi-
plication, it is in practice much more efficient.

7http://www.certicom.com

http://www.certicom.com
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ECC (bits) RSA (bits) Key size ratio AES (bits)
163 1024 1:6 –
256 3024 1:12 128
384 7680 1:20 192
512 15360 1:30 256

Table 5: NIST guidelines for the equivalent strengths of various crypto-
graphic algorithms

8-bit micro controller RSA-1024 ECC-160
Intel 8051 (14.75 MHz) 105s 4.6s 20x

Atmel AVR (4 Mhz) 22s 1.62s 14x

Table 6: Supplied by NIST to ANSI X9F1

formance tremendously.
The paper in [45] provides an overview of many modular exponention

and modular multiplication methods. The most well–known algorithm is
called the binary method or square and multiply method, and dates back to
antiquity.

An efficient implementation for point multiplications uses a discrete
Fourier transform (DFT) based method originally proposed for integer mul-
tiplication. The article in [9] proposes to use number theoretic transform
(NTT), which is found in many digital signal processing applications and
because DFT falls short in case of small integers as used for ECC cryptog-
raphy (uses e.g., 163 bit integers).

Finally some collected performance statistics and reference material.
Table 5 shows that ECC key sizes scale linearly, whereas RSA does not.
This shows that future security requirements for strong cryptography can
be computed with less power by the ECC. This table is widely cited and
can be used reliably for a comparison between the different cryptographic
schemes [31].

In Table 6 implementations for RSA and ECC are compared for 8-bit
architectures. The results show, that the ECC performs 20 times faster for
the Intel 8051 and 14 times faster for the Atmel AVR. This information is
taken from a Sun presentation available on the Internet8. If put in relation
with the expected growth in key length in Table 5, the advantage of the
ECC over the RSA is even more obvious.

At last a reference to a rock solid comparison study of RSA and ECC for

8http://research.sun.com/sunlabsday/docs.2004/talks/2.03_
Chang.pdf

http://research.sun.com/sunlabsday/docs.2004/talks/2.03_Chang.pdf
http://research.sun.com/sunlabsday/docs.2004/talks/2.03_Chang.pdf
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Algorithm ATmega128 @ 8MHz CC1010 @ 14.7456MHz
time data mem code time data mem code

s bytes bytes s ext+int, bytes bytes
ECC secp160r1 0.81s 282 3682 4.58s 180+86 2166
ECC secp192r1 1.24s 336 3979 7.56s 216+102 2152
ECC secp224r1 2.19s 422 4812 11.98s 259+114 2214
Mod. exp. 512 5.37s 328 1071 53.33s 321+71 764
RSA-1024 public-key e = 216 + 1 0.43s 542 1073 >4.48s
RSA-1024 private-key w. CRT 10.99s 930 6292 ∼106.66s
RSA-2048 public-key e = 216 + 1 1.94s 1332 2854
RSA-2048 private-key w. CRT 83.26s 1853 7736

Table 7: Average ECC and RSA execution times on the ATmega128 and
the CC1010 after [32]

embedded systems is given in [32]. Table 7 is taken from there.
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5 Trusted Computing Platform (TCP)

”The Trusted Computing Group (TCG) is a not–for–profit organization formed
to develop, define, and promote open standards for hardware-enabled
trusted computing and security technologies, including hardware build-
ing blocks and software interfaces, across multiple platforms, peripherals,
and devices. TCG specifications will enable more secure computing en-
vironments without compromising functional integrity, privacy, or indi-
vidual rights. The primary goal is to help users protect their information
assets (data, passwords, keys, etc.) from compromise due to external soft-
ware attack and physical theft.”9

The TCP is a consortium of about 170 companies from the IT busi-
ness, incorporating many big players. Corporations like AMD, Hewlett–
Packard, IBM, Infineon, Intel, Lenovo, Microsoft, Sun, etc. put a joint effort
in developing open industry–wide specifications for trusted computing
across multiple platform types. The range of specifications covers:

• Infrastructure Specifications

• Mobile Phone Specifications

• PC Client Specifications

• Server Specific Specifications

• Storage Specifications

• Trusted Network Connect (TNC) Specifications

• Trusted Platform Module (TPM) Specifications

• TPM Software Stack (TSS) Specifications

However, this endeavor is controversial. In the beginning, the TCG has
been critized because of its original motivation to establish digital rights
management (DRM) and to prevent people from running unlicensed soft-
ware, which is a rather economical intention under the sheepskin of user
security. One main criticism was that the specification formerly known as
TCPA takes away control from the user and gives it to the software and
hardware selling companies. Nowadays, the biggest concerns are remote
censorship and blacklists of computers. Many experts published articles
on the web [78, 5, 74] discussing the benefits and dangers of the workings
of the TCG.

9https://www.trustedcomputinggroup.org/about/

https://www.trustedcomputinggroup.org/about/
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5.1 Goals of the TCG

The TCG states four goals of trusted computing. Please note that the em-
phasis is on ’trusted’ and not on ’secure’:

• Attestation: Proving the system’s integrity (data and programs) and
validation of the platform to third parties. This is necessary to prove
the system’s identity to others. Based on one root key, it introduces
platform identity aliases, that may be associated with information
relating to a specific use or domain.

• Sealing is the binding of data to the system configuration. Data is
stored encrypted with a corresponding value of the system configu-
ration. It may be unsealed, only if the original system state can be
verified. Consider for example some encrypted data stored together
with a hashsum of the encryption/decryption algorithm to guaran-
tee its implementation has not been corrupted. Or some multimedia
data stored together with a hash sum of a certain codec to ensure it
can only be played by the software intended by the provider.

• Secure storage of cryptographic keys. Provide a secure storage for
sensitive information. This encompasses space for a unique platform
identification key and several derived keys. Generally, the TCG spec-
ifies migrateable and non–migrateable keys, i.e., key–pairs which may
leave the TPM, and keys which don’t.

• To provide secure cryptographic primitives like random number gen-
erator, hash function calculator, etc. in hardware. Cryptosystems
implemented in software can be insecure for two reasons, they can
be replaced or circumvented or the processed keys can be tapped,
e.g., by power analysis attacks.

5.2 TPM Specification Overview

The idea to boot a computer system into a trusted state before giving con-
trol to the operation system appeared first in [8]. It is based on the as-
sumption that it is much easier to manipulate software than hardware.
The solution to this problem is to implement trust anchor in hardware, a
mechanism to record what software is/was executed. This is the vision
of the ”Trusted Computing” functionality. One step into this direction is
TCG’s Trusted Platform Module (TPM) specification for such a hardware root
of secrecy.
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Figure 10: Block diagram of a Trusted Platform Module (TPM)

The schematic view of a TPM is depicted in Figure 10.
A TPM consists of following components:

• The RSA engine is a hardware implementation of the RSA algorithm
(see Section 4.3.1), which supports 512, 1024, 2048 bit keys.

• The RSA key generator generates public/private key pairs. Mostly
used for temporary session keys.

• The SHA–1 engine is a cryptographic primitive used by the TPM as its
trusted hash algorithm.

• The hardware random number generator provides a source of true ran-
dom numbers. This is for the nonce used in cryptographic protocols,
key generation, etc.

• Opt–in/out User can decide whether or not he wants to enable or dis-
able TPM functions.

• Execution Engine performs the coordination of the TPM. It processes
incoming requests and controls the other on–chip peripherals.

• The local I/O manages the communication from and to the device.
Typically a Low PinCount Bus (LPC) is used.

• Volatile storage: To use a key it has to be loaded into the TPM. This is
the location where session keys or external keys are stored for oper-
ation. The second purpose is to store integrity measurements in the
so–called Platform Configuration Registers acpcr.

• Non–volatile storage: This storage is implemented tamper proof and
used for the endorsement key and the storage root key.
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A TPM’s root–of–trust emerges from two keys, the Endorsement key (EK)
which provides a unique platform identity and is physically bound to the
TPM device, and the Storage Root Key (SRK) managing the on–chip key stor-
age. The SRK is a 2048 bit RSAS key and is the top level element – the root
– of the TPM key hierarchy. This key is recreated with each ”TakeOwner-
ship” operation, which binds a TPM to a particular user. Other keys stored
in the TPM are encrypted with the public part of the SRK when transferred
to the outside. Thus, they are useless without the TPM, which encrypted
them. For usage, they have to be loaded onto the TPM, where the corre-
sponding branch of the key chain is rebuilt. This forms a Root of Trust,
which is a ”hardware or software mechanism one implicitly trusts.” A set
of storage keys for different purposes are wrapped by the Root of Trust.

The TPM implements the concept of transitive trust; during initializa-
tion, a trusted component checks the next component to initialize. Hence,
a tree of trust emerges with the initially trusted component as its root of
trust. The steps to be taken are (a) compute the hash value of the next en-
tity, check for correctness, and, if successful, pass control to the measured
entity. This process starts with the BIOS initialization up to user level ap-
plications. This way the system can be forced by the operating system to
execute only trusted applications. Because a TPM is a slave device which
monitors and checks the system, it cannot alter itself the execution flow of
the system.

TPMs are designed to be relatively low cost devices that is important
for market acceptance. They provide only limited resistance against so-
phisticated hardware attacks, that is not perfect security, but better than a
pure software solution.

5.3 Related projects and implementations

In order to comply with the specifications of the TCG, chipmakers have
developed varying implementations that integrate the TPM functions into
a normal chipset. See Section C for an overview of names and short de-
scriptions.

The usual approach is to build a secure part of the operation system on
top of the TPM. Most security critical operations are then performed in this
secure system partition. The hardware guarantees that information flows
only from the secure (or trusted) partition to the non–trusted partitions.
A similar security pattern was firstly published as the Bell–LaPadula Model
[13]. In this model one property says that information from the level above
may not be read (no read–up) and information may not be disclosed to
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lower levels (no write–down). In order to pass information below it must be
declassified, e.g., encrypted. The key again is stored with a higher security
level than the message. Hence, the encrypted message can be read only
from subjects belonging to the key’s security level, but may be delivered
by a subject from a lower level.

Microsoft’s initiative is called Next Generation Secure Computing Base
(NGSCB, formerly Palladium). NGSCB consists of a security kernel called
the Nexus that is part of the operation system, and Nexus Computing Agents
(NCAs), which are trusted software agents invoked by the applications and
interfacing the Nexus.

The ARM’s TrustZone security extension features two virtual proces-
sors backed by hardware based access control. These two processors rep-
resent two worlds of trust. The access controls prevent information from
leaking from the more trusted world to the less trusted world. This ap-
proach facilitates the same design pattern as in Microsoft’s NGSCB: a rich
operation system executes in the less trusted part and a small security ker-
nel in the more trusted world.
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6 Physical Security

In an embedded system two sub–fields of security merge, on the one hand
physical security which is concerned with preventing or deterring attack-
ers from accessing a facility, resource, or information stored on physical
media, and on the other hand information security which is protecting pro-
grams and data against unauthorized access or modification, whether in
storage, processing, or transit, and against denial of service to authorized
users.

Section 2 lists several properties of embedded systems and stresses that
they require to stay operational and secure even in an untrusted environ-
ment. Consequently, they can not always trust their users or operators.
Attackers may try, e.g., to seek out failure modes, weak default values, or
simply use brute force in order to gain illegal access to information stored
on the device or to operate the device offside it’s specification.

The remainder of this section first introduces the terminology on tam-
per resistance. Next it presents some hardware security measures. Finally,
it focuses on physical and side–channel attacks. These types of attacks
refer to attack modes, which use physical properties of the embedded sys-
tem. They can be further classified into invasive (e.g. microprobing, re-
verse engineering) and non–invasive attacks (e.g. timing or power anal-
ysis). Often, attackers take a combined approach, in the first phase they
collect information during an invasive attack, which is then used to de-
sign a non–invasive attack.

6.1 Tamper resistance

Tamper resistance [56, 70] is concerned with protecting devices from un-
wanted physical access. On the contrary to side channel attacks (see Sec-
tion 6.3), which is a passive, physical implementation attack, device tam-
pering is an active, physical attack, executed to gain access to device inter-
nals like the bus subsystem, I/O pins, or even CPU registers. Some basic
design principles for building tamper–resistant devices can be found in
[50].

Figure 11 is a reproduction from [70]. It shows at which points in time
contermeasures are active during an attack. Before an attack starts attack
prevention measures are enabled. These can aim at avoiding the start of an
attack and can be achieved by deterrence, deception, monitoring, access
control, etc. If an attacker has successfully launched an attack the next
stage is attack detection, which is facilitated by intrusion detection systems.
After an attack has been detected and is still going on, a response action
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can be taken, or, if the attack is over, attack recovery must be facilitated and
a secure system state has to be recovered. To notice that an attack has
occurred, measures to provide evidence are necessary to establish.

AttackAttack 
prevention

Tamper 
evidence

Attack 
detection

Attack 
recovery

t

Figure 11: Tamper response modus operandi

According to [56], devices can be aware of tampering in three ways:

• Tamper–evident characteristics is to provide evidence that an attack has
been attempted. This is achieved by applying security seals, using
special covers, or enclosures, thus, something breaks when tamper-
ing to prove the act to an authority.

• Tamper-resistant characteristics is to provide passive physical protec-
tion against an attack. Chip–design measures include the encryption
of internal bus lines and memories which contain critical persistent
data. Moreover, the layout should contain special characteristics,
such as scrambling of bus lines and memories as well as special logic
styles [56]. If an attacker manages to successfully tamper the device,
he can get only useless information out of it.

• Tamper-responsive characteristics is to provide an active response to the
detection of an attack, thereby preventing its success. For example
zeroisation achieves this by the deletion of all security relevant data
(e.g. keys), when an attack is detected rendering the device useless.
Of course, it is crucial to minimize the delay between when an attack
is carried out and when the response action is taken to prevent the
attacker from interfering with the response procedure.

6.2 Hardware measures

One of today’s microprocessor design goals is to maintain observability
and controllability to support testability of the chip. These hardware mea-
sures and interfaces built on a chip may severely decrease the chip’s secu-
rity by opening a backdoor to everyone who is able to plug and operate
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(e.g., a JTAG) debugger to the device. On the other hand a correct behavior
and well–tested design is even more stringent when building secure chips
[35]. Disabling all on–chip debugging resources after production may be
possible either through software by locking the chip through a special reg-
ister, or by hardware means, e.g., cover test points with epoxy, or, as with
smart cards, scrub off test circuitry from the chip. Furthermore, provide a
logic enforcing that security functions do not execute with JTAG–enabled
hardware.

Some best–practices for a robust hardware design are listed in [68]:

• Put critical data bus traces below the surface of the board

• Use a highly–integrated chip design or high–density packaging

• Use on–chip RAM to secure keys during decryption

• Use a CPU that supports segment-level cache locking

• Support the use of a smart card, SIM card, or TPM

• Use chassis tamper–detecting hardware

A recently discovered way [65] to imprint a unique identity to chips
is a particular integrated circuit called physically uncloneable function (PUF).
This technique is embedded in the design process of the semi–conductor.
Because of process variations, no two Integrated Circuits are identical.
The idea is to extract information from a complex physical system, a spe-
cially designed circuit. This circuit implementing the PUF is loaded with
a so–called challenge and yields a response. A Silicon PUF can be used as
an unclonable key. The lock has a database of pre–computed challenge–
response pairs. These pairs act as shared secret and authenticator of the
PUF. To open the lock, the key (PUF) has to show that it knows the response
to one or more challenges. Figure 12 depicts this relationship. Technically,
the PUF delays depend on overlaid metal layers and chip package. Any
invasive attack (e.g., package removal) changes PUF delays and destroys
PUF. Non–invasive attacks are still possible.

6.3 Side–Channel Attacks

”One Cannot Not Communicate.” Paul Watzlawick [81] states that every
kind of behavior is a kind of communication. Even intentionally sending
out no signals is a signal. In the context of embedded systems, we want to
interpret this quote that an embedded system does not only communicate
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Figure 12: How a PUF can be used as an uncloneable key.

over the intended channels, but also has other non–intentional channels,
so–called side channels. For a side channel attack [47, 57] non–obvious
data like power consumption and target temperature is analyzed.

Cryptographic schemes are designed as black–boxes with concisely de-
fined interfaces. During the functional design phase of an embedded de-
vice this assumption of a closed environment which does not leak any sen-
sitive information perfectly holds. However, in a real–world application it
strongly contradicts the physical nature of every implementation, which
will leak side–channel information, if no appropriate counter measures are
taken.

Cryptographic devices encompass data processing components like ded-
icated logic circuits implementing a cipher and memory components. Cryp-
tographic operations can be implemented either entirely in hardware or on
a general–purpose processor in a hardware–software co–design approach.
Sources for side–channels attacks are exposed by timing information, power
consumption, electromagnetic leaks, or even sound of the device. In the gen-
eral attack pattern, the cryptanalyst uses one or more side–channels to
gain extra information about secrets in the system.

During a cryptanalytic analysis like, e.g., a chosen–plaintext attack (see
Section 4.1.1 for more attack modes), the attacker captures additional in-
formation like a power trace of an encryption run. The collected data can
the be used for guessing key bits after applying noise reduction or similar
stochastic techniques to preprocess the information.

6.3.1 Power Analysis

This section summarizes power analysis attacks on cryptographic devices.
The first article on this topic was written by Paul Kocher and appeared in
[46]. There are a comprehensive master’s thesis [76] in german language
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and a book [57] explaining basic and advanced techniques for performing
power analysis.

The basic principle of operation and setup for a power analysis attack is
depicted in Figure 13. The setup consists of a cryptographic device (upper
left), a workstation for command and control (upper right), and a measure-
ment device like an oscilloscope (bottom). The workstation starts the cryp-
tographic operation on the device in (1). Subsequently, the device triggers
the beginning of a measurement on the oscilloscope (2), e.g., through some
particular waveform or it sets a pin to signal that the operation starts. Now
the oscilloscope does its work and samples the power consumption of the
device during the run (3). Usually, it measures the voltage drop across a
small ohmic resistor, a measuring shunt. Finally, the captured power trace
is transmitted back to the workstation (4), which will need to collect a cou-
ple of them for a further analysis. A sample power trace is depicted in
Figure 14.

1

2

start device

trigger
measurement

3 capture
power trace

transmit 
measured results

4

Figure 13: Setup for a power analysis attack

After capturing power traces of a cryptographic operation, the analy-
sis starts in a second step. To be able to interpret the measurements cor-
rect, first a power consumption model has to be derived. In a CMOS10 circuit,
the total power consumption is the sum of the power consumption of all
logic cells assembling the circuit. A CMOS logic cell has a (low) static con-
sumption originating from the leakage current between the complemen-
tary transistors. The dynamic power consumption is due to the switches

10Complementary Metal–Oxide–Semiconductor, one of the most common technolo-
gies used by the chip manufacturing industry. It uses complementary and symmetrical
pairs of p–type and n–type field–effect transistors for logic functions
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Figure 14: Example power trace

of the input or output signal of a logic cell. Basically, a signal has four
possible transitions: during 0 → 0 and 1 → 1, the signal stays constant
and only static power is drained; when 0→ 1 and 1→ 0 transitions occur,
dynamic power is drained, which is data–dependent.

Basically two types of power analysis can be distinguished, Simple Power
Analysis (SPA) and Differential Power Analysis (DPA). In SPA the attacker
tries to read the sensitive data (e.g., the key) directly out of the power
trace. A DPA attack compares the actual power traces to a stochastic hy-
pothesis called the oracle. It aims at tuning the oracle that it will always
make a correct guess. The two types of attacks differ in several ways, SPA
uses a small number of power traces and requires a detailed knowledge
of the device, whereas DPA needs a large number and not many details on
the device are necessary.

The goal of every countermeasure against is to make a device’s power
trace independent on the processed data. One well–studied technique is
called masking. Each intermediate value is assigned a random value called
mask which is generated inside the cryptographic device and not known
to the attacker. The mask changes for every operation. At the end of the
computation the mask is removed. A masking scheme describes how masks
are subsequently applied to and removed from the data and the key dur-
ing the algorithm execution. The power traces still give evidence of the
values processed, but they are useless without knowing the masks. An-
other countermeasure to power analysis attacks is called hiding, which
aims at removing the dependency between data values and power con-
sumption. There are two ways to solve this, one approach is to randomize
power consumption through additionally using power for some bogus op-
erations, and another one is to build devices in a way that they consume
equal amounts of power for all operations carried out.
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7 Information Security Economics

Anderson and Schneier state in [7] that economic considerations of secu-
rity are at least as important as the technical ones.

The definition of risk incorporates two sides: the chance a risk event
will occur and the loss or harm resulting from the occurrence. Thus, on
the one hand there is security, defined as freedom from harm and loss,
and on the other there is risk, which is the possibility of suffering a risk
loss. Risk management is then the process to optimize the security measures
taken and the risk losses experienced. Information system security actions
taken today work to reduce future risk losses. Because of the uncertainty
of future risk losses, perfect security, which implies zero losses, would be
infinitely expensive.

In order execute a risk management procedure the first step is to perform a
risk assessment, which produces a quantitative, monetary measure of risk.
The goal is to compare risks to another and to the cost risk mitigation
techniques, which are the next step to be taken. On this basis one can
decide, whether a measure to deflect a threat is worth the money spent on
it. An organizations’ security management consists of its risks and its risk
mitigation measures. They are controlled by security auditing which goal
is to provide an independent evaluation of the risk management.

7.1 Motivation

This section gives a short motivation why security will be a major factor
for the success of an embedded system. For instance oil, gas, and elec-
tricity companies are shifting to a new way of distributing and accounting
their goods. To hold off fraud and misuse they need security mechanisms
to prevent severe financial losses.

”In a five to ten years perspective, it is expected that Integrated operations
(IO) by smart use of real–time monitoring, real–time control, visualisation and
new work processes based on Information and Communication Technology (ICT),
will constitute the single most important driver for increased efficiency in the
Norwegian oil and gas industry” 11

7.2 Security Metrics

”If you can not measure it, you can not improve it.” Bellovin uses this cita-
tion from William Thomson, the first Baron Kelvin, [79] to state that in the

11http://www-05.ibm.com/no/solutions/chemicalspetroleum/io.html

http://www-05.ibm.com/no/solutions/chemicalspetroleum/io.html
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foreseeable future it will be impossible to create a metrics for security [16].
Finding a formula to numerically express a system’s security is a difficult
problem to solve.

”Security is not falsifiable” (Popper). We can prove that there has been a
security failure, but we cannot prove that there has not. Popper goes even
further and puts the presence of security into question. The quote can be
thought of a binary measure, security is present or it is not. Can a system
be considered secure, where some but not all security holes are closed?

The lowest expected cost for anyone to discover and exploit a vulner-
ability in a system is called the cost–to–break (CTB). The concept of this
method has its origin in cryptography and reflects the cost/benefit pro-
portion of an attacker seeking financial gain. It would be uneconomic to
spend more money than the system’s asset expected value to break into
system [71].

7.3 Vulnerability markets

Nowadays, software is vulnerability–prone not because programmers don’t
know how to do better, in fact better tools and training are available than
ten years ago, but in order to deliver the product to the market earlier than
a competitor, security is often neglected. A software’s security is hard to
measure so there is no direct impact on the selling of the product. More-
over, it is hard for a customer to discern between a good security–enabled
product and a bad one. So the incentives for a software company are low
to integrate security in their product [6].

Two approaches exist to tackle this problem, vulnerability markets and
insurance. Software vendors and security companies have established a
legitimate market for software vulnerabilities. They offer rewards for vul-
nerabilities and exploits to anyone who is willing to share his knowledge.
On the other side, their customers are interested to be informed about
weaknesses in their IT–systems before anyone else can make use of this
vulnerability. Sooner or later bugs are reported to the public and there-
after the attacks targeting a recently published vulnerability jump up. The
paper in [67] discusses the existence of a vulnerability black market and
makes suggestions towards a legal vulnerability market.

The subject of openness of vulnerability reports is widely discussed.
Anderson concluded that it helps attackers and defenders equally [3]. Ozmet
and Schechter found that it improves system security over the long term
[61]. However, public disclosure of vulnerabilities can have some desire-
able side–effects, for instance it motivates vendors to come up with fixes
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more quickly.
The second approach mentioned above is to insure the IT infrastruc-

ture, which targets at transferring the risk from the owner to an insurance
company. To deal with its customers systems, insurance companies send
out expert assessors who analyse the risks and threats. This information
helps both the insurer and the insured. With increasing experience, insur-
ers learn to assess the risks in a contract more precisely.
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A Security Standards and Documents Overview

The first part of the chapter lists some important standards in the area.
This section overlaps with the next one which focuses on certification of
security.

A.1 International Standardization Organization (ISO)

The first standard on Informantion Security was published by the British
Standards Institute BSI in 1995 under identification number ”BS 7799 Part
1”. It is defining a ’code of practice’ comprising statements of generally
accepted good practice for maintaining information security rather than
technical means. In 2000 it was adopted as ”ISO/IEC 17799”. Then in
2005 the standard ISO 27001 emerged from ”ISO/IEC 17799” and ”BS 7799
Part 3”, representing the state–of–the–art. This new standard includes the
possibility of certification of an organisation’s IT–systems through an ac-
credited certification body, i.e. an organisation accredited to perform such
an assessment of management systems.

From July 2007 on, there are two standards concerning information se-
curity available from the ISO (quoted from the homepage12):

ISO 27002 is a code of practice for information security. It details
hundreds of specific controls which may be applied to secure
information and related assets. It comprises 115 pages orga-
nized over 15 major sections.”

ISO 27001 is a specification for an Information Security Man-
agement System, sometimes abbreviated to ISMS. It is the foun-
dation for third party audit and certification. It comprises 34
pages over 8 major sections. ”

Both standards can be purchased online for approximately $299.

A.2 Bundesamt für Sicherheit in der Informationstechnik

The german Bundesamt für Sicherheit in der Informationstechnik (BSI)
published the ”IT–Grundschutz Manual”, which is compatible to the ISO
standard 27001 (see Section A.1). It consists of three parts:

12http://17799.standardsdirect.org/

http://17799.standardsdirect.org/
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• BSI Standard 100–1 Information Security Management Systems (ISMS):
Part one [19] addresses standard security measures, the solution of
common security problems like misconfiguration, IT infrastructure
and environment.

• BSI-Standard 100–2: IT–Grundschutz Methodology [20]: This part
introduces a methodology aimed at producing an IT security concept
for common IT applications and systems and establishing a continu-
ous and effective IT security process.

• BSI-Standard 100–3: Risk Analysis based on IT–Grundschutz [21]:
The last part covers issues for security requirements going beyond
those defined for standard IT systems as described in the other two
parts. It contains chapters for determination of additional threats,
threat assessment, and handling risks.

The BSI defines the goal of the manual as follows:

The aim of the IT–Grundschutz Manual is to achieve a security
level for IT systems that is reasonable and adequate to satisfy
normal protection requirements and can also serve as the ba-
sis for IT systems and applications requiring a high degree of
protection. This is achieved through the appropriate applica-
tion of organisational, personnel, infrastructural and technical
standard security safeguards.

The standard is available in German and English language for down-
load at the BSI’s homepage13.

A.3 Austria Secure Information Technology Center (A–SIT)

The A–SIT is an independent association and comprehends itself as cen-
ter of excellence for IT–security. It’s members are the Bundesministerium
für Finanzen (BMF), Österreichische Nationalbank (OENB), and the Tech-
nical University in Graz. The organisation publishes the Österreichisches
Informationssicherheitshandbuch [22].

The first part titled ”Informationssicherheitsmanagement” comprises chap-
ters to management of Information Security, development of an organisa-
tional security policy, risk assessment, implementation of a security policy,
maintaining security during operation, and industrial security.

13http://www.bsi.de/english/gshb/
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The second part titled ”Informationssicherheitsmassnahmen” concerns it-
self with human and structural measures, the IT systems security, and dis-
aster recovery and contingency planning.

The manuals can be download freely from the organisation’s home-
page14.

A.4 Instrumentation, Systems, and Automation Society (ISA)

The organisation formerly known as ANSI and now called ISA deliverd in
2004 two standards for establishing, maintaining, and auditing informa-
tion security in industrial applications.

The first report [39] titled ”Security Technologies for Manufacturing and
Control Systems” contains chapters on authentication and authorization
technologies, access control technologies, ecryption technologies and data
validation, auditing tools, and physical security controls.

The second report [38] titled ”Integrating Electronic Security into the Man-
ufacturing and Control Systems Environment” focuses on the process of im-
plementing security measures in the industrial system. It encompasses
chapters on risk assessment, how to define and deploy countermeasures,
periodic audit, compliance measures, routine security reporting and anal-
ysis. Furthermore, it contains example sheets to facilitate these processes
at a production site.

The standards are available for download or can be ordered. Each of
them costs approximately $120.

A.5 FIPS 140-2: Security Requirements for Cryptographic
Modules

This standard [29] is probably one of the best known standards on Infor-
mation Security. It origins from the financial world, which was the first
civil application with highest security requirements.

The standard defines the security requirements that must be satisfied
by a cryptographic module used in a security system protecting unclassified
information within IT systems. A cryptographic module in this context
is ”the set of hardware, software, and/or firmware that implements approved se-
curity functions (including cryptographic algorithms and key generation) and is
contained within the cryptographic boundary.”

Four increasing levels of requirements for physical security are avail-
able:

14http://www.a-sit.at

http://www.a-sit.at
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Level 1: No physical security mechanisms are required in the module be-
yond the requirement for production–grade equipment.

Level 2: Tamper evident physical security or pick resistant locks. Level 2
provides for role-based authentication. It allows software cryptog-
raphy in multi-user timeshared systems when used in conjunction
with a C2 or equivalent trusted operating system.

Level 3: Tamper resistant physical security. Level 3 provides for identity-
based authentication.

Level 4: Physical security provides an envelope of protection around the
cryptographic module. Environmental failure protection and testing
techniques (EFP and EFT) must be applied.

The National Institute of Standards and Technology (NIST) issued the
FIPS 140 Publication Series for both hardware and software components.
It can be downloaded from tthe NIST homepage15.

A.6 Information Security Forum (ISF)

The ISF is an organisation comprising 270 leading companies and pub-
lic sector organisations, whose membership is evenly spread over a wide
range of sectors. It publishes The Standard of Good Practice for Information
Security” [40], which understands itself as complementary to other stan-
dards such as ISO (see Section A.1).

The focus is on Information Security for companies and businesses. It
defines five key aspects of Information Security: Security Management
(enterprise-wide), Critical Business Applications, Computer Installations,
Networks, and Systems Development.

The standard is available for free download from the organistion’s home-
page16.

A.7 Common Criteria (CC)

The Common Criteria is an international approach to security evaluation.
It draws from the strength of previous evaluation schemes. Participants
are governmental or related organizations.

15http://csrc.nist.gov/cryptval/140-2.htm
16http://www.isfsecuritystandard.com/

http://csrc.nist.gov/cryptval/140-2.htm
http://www.isfsecuritystandard.com/
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Two kinds of evaluations are possible, for products and for protection
profiles (PP). A CC PP is an implementation–independent set of security require-
ments for a category of products or systems that meet specific consumer needs.
It provides a through description of threats, environmental issues and as-
sumptions, security objectives, and CC requirements for a familiy of prod-
ucts. In order to evaluate a single product, a so–called security target has
to be either derived from a PP or developed on its own, which is a set of
requirements and specifications for a particular product.

The homepage17 contains a lot of useful information on members, eval-
uated products, protection profiles, national security authorities, and other
information.

The seven Evaluation Assurance Levels (EAL):

EAL 1: Functionally Tested Analysis of of security functions based on func-
tional and interface specifications. It is applicable to systems where
security threats are not serious.

EAL 2: Structurally Tested Analysis of of security functions including the
high–level design. Evidence of developer testing based on functional
and interface specifications, independent confirmation of developer
test results, strength–of–functios analysis, and a vulnerability search
for obvious flaws must be provided. This level is applicable in ab-
sence of ready availability of the complete development record as,
e.g., when securing legacy systems.

EAL 3: Methodically Tested and Checked Same evaluation criteria as in EAL2
and, in addition, the use of development environment controls and
configuration management. This level provides a moderate level of
security.

EAL 4: Methodically Designed, Tested, and Reviewed This level requires a
low–level design, complete interface description, and a subset of the
implementation for the security function analysis. Additionally, an
informal model of the product or system security policy. This level
targets systems with a moderate to high security requirement. Exam-
ples for EAL4 products are operating systems like Novell NetWare,
SUSE Linux Enterprise Server 9, Windows 2000 Service Pack 3, Red
Hat Enterprise Linux 5, and Trusted Solaris.

EAL 5: Semiformally Designed and Tested A formal model, a semiformal
functional specification, a semi–formal high–level design, and a semi–
formal correspondenceamong the different levels of secification are

17http://www.commoncriteriaportal.org

http://www.commoncriteriaportal.org
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all required. This level is applicable for smart cards and multilevel
secure devices.

EAL 6: Semiformally Verified Design and Tested Semi–formal low–level de-
sign and structured presentation of the implementation in addition
to the inputs for the security analysis in EAL6.

EAL 7: Formally Verified Design and Tested The highest level of evaluation
requires a formal representation of the functional specification and a
high–level design, and formal and semiformal demonstrations must
be used in correspondence. The only product that has been evalu-
ated at EAL7 is the Tenix Interactive Link Data Diode Device, which
is a hardware device that allows data to travel in one direction, while
preventing data from travelling in the opposite direction.

B Primality Testing

Primality testing is concerned with testing if a given number n is a prime
number. Prime numbers are a subset of the natural numbers and a prime
is charaterized by the property that its sole divisors are one and itself.

On the contrary to prime numbers, all other numbers are called com-
posite, because they can be written as a composition of primes. The task of
primality testing is to create a sieve for the set of natural numbers, which
separates composites and primes. There are many ways to build such a
sieve, which differ in efficiency of computation and probability of correct-
ness.

Sieve of Eratosthenes This is the oldest known method to compute primes.
It starts by making a list of all the natural numbers less than or equal to
n, which is the number to test. Starting with two, strike out the multiples,
continue with succeeding not striked number, then the numbers that are
left are the primes. Actually, this method is fast, but its implementation
uses lots of memory. It’s running time is denoted with O(n), while the
sieve of Atkin, an improvement to Eratosthenes’ algorithm, runs in sub-
linear time O( n

log logN
).

As more recent algorithm aim at testing large numbers, the Sieve of Er-
stosthenes algorithm can still perform better on computing primes up to
a certain bound for smaller numbers (e.g. 200). Thus, it can improve per-
formance by pre-computating a list of primes and then checking whether
the input number is divisible by any prime from the list before continuing
with a more sophisticated algorithm.
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Rabin–Miller. The Miller–Rabin test is a probabilistic primality test. A
found prime is with a small probability a composite number. The error
rate is smaller the 0,5 %, thus negligible. The running time of this algo-
rithm is O(k × log3n), with k being the number of random values used for
testing. The probability of an error may be reduced by repeating the test
more often. The algorithm relies on modular exponention (see ??). FFT-
based multiplication can push the running time down to O(k × log2n). An
implementation of this algorithm is shipped with some standard mathe-
matics libraries, e.g., the GNU MP Bignum Library (GMP).

AKS The AKS algorithm [2] is the most recently discovered method to
do primality testing. The algorithm works deterministic and executes in
polynomial time. The running time of the algorithm is given in the paper
with O(log12+ε(n)), but since the publication of the paper lots of improve-
ments were made, which decrease the execution time significantly. A good
guide for an implementation is given in the paper in [25], which takes the
new insights on the algorithm concerning efficiency into account.
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C Chipset manufacturers and TPM functional-
ity

CORPORATION TPM NAME DESCRIPTION

Intel Trusted execution
technology

. . . provides hardware-based mech-
anisms that help protect against
software-based attacks and protects
the confidentiality and integrity of
data stored or created on the client
PC.

AMD Secure Virtual
Machine (SVM)

. . . enhances virtualization and
provides efficient virtual machine
memory isolation for improved
security and support of virtual
users.

Transmeta Transmeta Security
eXtensions (TSX)

Transmeta will provide interfaces
to this hardware encryption engine
via cryptographic instructions that
are an extension to the x86 in-
struction set architecture. Named
the Transmeta Security Extensions
(TSX), these instructions will sup-
port key preparation and the DES,
DES– and Triple–DES ciphers

IBM Embedded Security
Subsystem

. . . is a chip on the ThinkPads main-
board that can take care of certain
security related tasks conforming to
the TCPA standard. It provides
basic TPM functions.

ThinkVantage Tech-
nology.

. . . can help protect yoour systems
and data from unauthorized access
and certain types of unexpected ac-
cidents.

Winbond Cor-
poration

SafeKeeper. . . . is a fully compatible with the
TCG 1.2 specification, features
true interoperability, and best–
in–class performance across PC
platforms.
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Phoenix
Technologies

Core Managed En-
vironment (CME)

. . . is a standards–based set of en-
abling technologies and applica-
tions built into the foundation of
PCs, servers, and other digital de-
vices. Independent of the oper-
ating system (OS), Phoenix CME
technology enables manufacturers
to deliver products with core sys-
tem management capabilities that
are always available and always se-
cure.

Fujitsu FirstWare Vault . . . is a combination of a host pro-
tected area (HPA) – a special, pro-
tected environment on the com-
puter for storing data – and a Win-
dows application for accessing ”vir-
tual CD” data, placed by the manu-
facturer into the HPA.

Hewlett
Packard

ProtectTools . . . is a hardware security chip,
called the Trusted Platform Module
(TPM) that integrates the core ele-
ments of trust into the subsystem.

Chip implementations of TPMs are available from several manufacturers.
See Table reftab:tpman for a product table.

Manufacturer Model name Interfaces EAL
Atmel AT97SC 320 LPC, TwoWire 3+
Infineon SLD 9630TT1.2 LPC 4
National-Semiconductors PC21100 LPC 4
Sinosun SSX35 LPC, ISO 7816 3
STMicroelectronics ST19WP18-TPM LPC, ISO 7816 3
Winbond WPCT200 LPC –

Table 9: Trusted Platform Module (TPM) product table

Hardware certification of TPMs is performed through the Evaluation As-
surance Level (EAL). according to the Common Criteria (CC), an international
standard (ISO/IEC 15408) for computer security. The EAL consists of seven
increasing assurance levels. Higher grades indicate a degree of confidence
that the system’s principal security features are reliably implemented.
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