

CUSTOM MODULES AND AUTOMATIC UPDATING 237

code = urllib.urlopen(URL + CODE).read()
f = file(u"E: \\ Python \\ " + CODE, "w")
f.write(code)
f.close()
print "File %s updated successfully!" % CODE

As you can see, it uses the standard urllib.urlopen() function to
download a file from the web, like many examples in Chapters 8 and 9.
In this case, the file name CODErefers to a PyS60 source code file that
we have made available to a web server at URL. Change the URL to
point at your own web folder containing a file named mytest.py . The
script downloads the file and saves it to the E: \ Python \ directory, so it
can be found in the PyS60 interpreter’s Run script menu. After running
Example 108, a new file mytest.py should appear there as a new
Python script.

It is impossible to overemphasize the usefulness of this little script. It
has proven vital in projects carried out by the authors of this book in two
respects. First, for some PyS60 developers, it can be the fastest way to
upload code to the phone during development. If you are familiar with
website development and you can edit files in the web easily, you can
place and edit your PyS60 files on the web as well. When you need to test
the code, you just execute this program and the source files are updated
on your phone instantly. This is particularly convenient if you can use
WiFi on your phone for network connection and you can run a local web
server on your PC.

Second, this method has proved to be valuable in production settings
as well. The authors of this book designed and implemented a large-scale
urban game, called Manhattan Story Mashup, in New York in September
2006. More information about the game can be found in Section 11.2.

Because of many uncertainties, we were reluctant to freeze the game
client a long time before the actual event. However, the players were
given phones to play the game a week before the event, so we needed a
method of updating the last-minute fixes to the players’ phones.

Our solution is depicted in Figure 10.1. As you can see, the figure
shows a PyS60 interpreter. However, we modified the application menu
of the interpreter slightly. This is not difficult, since the PyS60 interpreter
UI is implemented in Python (naturally!) and PyS60 is distributed as open
source, so you are free to modify it in any way.

We added an Update StoryMashup item to the menu, as shown in
the figure. This item executed a function similar to Example 108, which
updated the game client code from the web.

Finally, just before the game started, we instructed our 160 players
to update the latest version of the game client simply by selecting this
item. As a result, all the players were using an identical version of the
client, which included our last-minute changes. This method was a real
life saver.

238 EFFECTIVE PYTHON FOR S60

Figure 10.1 Automatic updating

10.3.4 Simple Plug-In Mechanism
We may take automatic updating even further. Not only can you down-
load PyS60 modules from the web using Python, but you can also decide
which modules to import at run time.

This makes your applications infinitely extensible. Depending on the
user input, the physical environment or any other parameter, you can
make your application request new functionality from the web. This leads
to opportunities that come from science fiction, but, in simple terms, it
allows you to easily make a plug-in mechanism for your applications.

Example 109: Plug-in mechanism

import urllib

URL = "http://www.myownserver.com/pycode/"

def download_plugin(plugin_name):
filename = plugin_name + ".py"
code = urllib.urlopen(URL + filename).read()
f = file(u"E:\\Python\\Lib\\" + filename, "w")
f.write(code)
f.close()
return __import__(plugin_name)

plugin_name = appuifw.query(u"Give plug-in name", "text")
print "Downloading plugin", plugin_name
plugin = download_plugin(plugin_name)
print "Plugin loaded!"
plugin.askword()

PROGRAM PATTERNS 239

Example 109 wraps the download functionality of Example 108 in
the function download plugin(). As in the previous example, it
downloads a PyS60 source code file from a specified URL on the web
and saves it to a local directory. However, in this case, the file is saved to
E:\Python\Lib, which makes the file able to be imported as a custom
module, as we saw in Example 107.

The magic happens with Python’s special import () function.
Normally, when you import a module to your program, you have to
specify the module’s name in your source code, after the import
statement. In contrast, the import () function lets you import a
module at run time, by giving the module’s name in a string. It returns
the imported module as an object that you can use in the usual way.

In this example, the user can specify the plug-in name, plugin name,
that is loaded from the web. Let’s assume that you type ‘myplugin’ in the
dialog. Then, the download plugin() function tries to download the
file http://www.myownserver.com/pycode/myplugin.py.

You should make sure that such a file is available. When the file
has been downloaded successfully, it is saved to E:\Python\Lib, after
which it can be imported as any other module.

In this case, we import the module immediately using the import
() function. The function download plugin() returns the newly

imported module in the variable plugin. We assume that the module
contains a function called askword() that is then called in the last line
of the example, which demonstrates that the new plugin module can
be used just as usual.

Note that this example does not contain any precautions for exceptions.
A real plug-in mechanism should make sure that the plug-in file is
available and that it contains the necessary functions. This is easy to
accomplish with try–except blocks, as described in Chapter 6.

10.4 Program Patterns

We have gone through over 100 code examples. The examples have
demonstrated a wide array of topics from string handling, GUIs, MP3
players and 2D graphics to GSM locationing, AppleScript, JSON gateways
and web services. From one point of view, this book could be considered
a large grab bag of interesting things that one can do with a mobile phone.

On the other hand, one could claim that many examples differ merely
on the surface level from others. You have probably noticed this phe-
nomenon as well: many new modules and examples that we have
introduced might have felt understandable to you at first sight. Even
though the module name and, of course, its functionalities were different
from what you had seen before, the new example often shared a similar
structure with earlier examples.

240 EFFECTIVE PYTHON FOR S60

This book is arranged according to subject areas, such as graphics,
Bluetooth and network programming. Given that we believe that most
of our readers are more interested in cool applications than theoretical
computer science, this grouping felt appropriate.

However, we could have grouped the examples according to the
program pattern that they follow. That is, instead of the subject area,
we might categorize the programs according to how they are structured
internally and how they interact with the outside world.

The following list presents one such categorization. For each pattern,
we give a partial list of examples that follow this pattern. Note that a single
program may be based on several interleaved patterns. For instance, the
GSM cell ID mapper (Example 49) follows both the updating and the
application patterns below.

• Script: these are small examples that execute sequentially from
the beginning to the end and do not wait for external events to
occur. Scripts are handy for automating small tasks. For instance,
Examples 43, 63 and 79 follow this pattern, as well as all the examples
in Chapter 3.

• Application: these are examples that are based on the S60 application
user interface framework. The user may interact with the application,
for example, by way of the application menu. Internally, the code
relies on event callbacks. For instance, Examples 12, 49 and 73 and
all the examples in Chapter 9 follow this pattern.

• Updating: this pattern is useful in cases where the program must
update some data periodically. Typically, this is accomplished using
the e32.Ao timer object that is set to call a function at regular
intervals. The GSM cell ID mapper in Example 49 and EventFu in
Section 9.3 follow this pattern.

• Event-driven: external events can originate from some other source
as well as the user interface. If the program must react to external
events, typically by way of callbacks, we say that the program is
event-driven. Examples include the game of Hangman in Section 4.5
that reacts to incoming SMS messages and the Instant Messenger in
Section 8.6.2 that reacts to network events.

• Game: here, the crucial feature is an event loop that keeps the
program active even without any external events. This pattern was
thoroughly described in Section 5.5 and first exemplified by the
drawing application in Example 33.

• Client–server: many examples in Chapters 7 and 8 are based on
communication between a client and a server. The idea is that two
independent programs communicate and thus affect each other’s state.

SUMMARY 241

The Bluetooth client in Example 59 and the server in Example 60 are
illustrative of this pattern.

• Concurrent: in many real-world settings, a program must perform
many things at the same time. The use of callback functions relies on
the fact that some mechanism is listening to events in the background,
although your program may simultaneously be busy doing something
else. Thus, many examples we have seen actually work concurrently
behind the scenes.

In this book, we have deliberately avoided touching this issue
too much, since it is notoriously difficult to program well-behaved
concurrent programs. Fortunately, PyS60 often provides a way to
avoid using threads and other concurrent programming techniques,
such as active objects, used by Symbian OS, explicitly. However, in
Section 8.6 we presented a message handler (Example 83) that shows
a clean pattern of concurrency using threads.

Once you start building more complex applications of your own,
seeing and using these patterns might prove useful. Before coding a single
line of code, you can decide which of these patterns your application
code should follow – often the choice is really evident. After this, you
can browse through the examples that use that particular pattern. In the
best case, you might be able to use one of the examples as a skeleton for
your application and get past the ‘empty editor’ syndrome.

10.5 Summary

Python is a great language in which to write elegant and clean code.
Writing clean code is the best way to avoid bugs in the first place and
it gives you a feeling that you know what happens in your program at
all times. Consequently finding any bugs is easier and fixes are simpler.
Naturally the sense for elegant code is something that needs lots of
hands-on practice and failures, to develop.

If you feel adventurous, you could take a look at the Python source code
and find out how API calls are implemented. This is not as intimidating
as it may first sound, since the code is typically understandable and, even
if you do not understand it fully, it can point you in the right direction.
Luckily PyS60 is open source so this is a real option!

There are often many different ways to accomplish one goal in pro-
gramming. To get to your goal, you have to make a great number of small
decisions. Often, alternatives are technically similar and the difference is
mostly a matter of aesthetics. However, style does matter in programming.
It makes sense to keep some rules of thumb in mind that may help you
write better code.

242 EFFECTIVE PYTHON FOR S60

It may be enlightening and entertaining to read the following short
articles:

• ‘Zen of Python’ at www.python.org/dev/peps/pep-0020

• ‘Python Style Guide’ at www.python.org/dev/peps/pep-0008

These articles give deeper insights into issues of coding style in Python.
Besides those articles, which discuss the Python language in general, we
would like to present some thoughts that seem to be especially appropriate
for PyS60:

• Make sure you understand it

Don’t write or use code which you do not fully understand. Debugging
alien code is no fun. By keeping this principle in mind, you will
become a master of PyS60 in no time.

• Don’t copy and paste code

Related to the previous advice, you should understand every line of
code in your program. If you type in each line manually, you force
yourself to think what you type.

• Be prepared for the real world

Many bugs are caused by unexpected input values from the outside
world. Try to keep the diversity of possible contexts in mind when
designing your code. This is particularly important with mobile code,
which is often used in many different environments. However, do not
aim at universal solutions since they rarely exist. Also, remember to
validate data before you use it and handle exceptions properly.

• Make it modular

Complex programs can be kept simple if they are modularized prop-
erly. Separate your code logic into small functions and divide your
code into modules.

• Keep it simple

Use as few lines of code as possible, no fewer, no more. In Python,
terseness is a virtue but not at the price of understandability.

• See patterns in your code and in that written by others

Follow patterns that you have seen to work in practice. This way you
can avoid debugging the same problems every time. Note, however,
that patterns are just conceptual tools. Do not try to force your program
to follow a pattern, if it doesn’t feel natural. Also, do not use patterns
as an excuse to copy and paste code.

SUMMARY 243

• Be pragmatic

As we said in Chapter 1, PyS60 is all about having your head in
the clouds, your hands in mud and your feet on the ground. That
is, come up with, implement and test working prototypes in rapid
cycles. Only dinosaurs spend years thinking about grandiose software
architectures – other reptiles have already evolved past that stage.

11
Combining Art and Engineering

This chapter brings together many of the concepts and techniques shown
in the previous chapters. We provide a series of real-world application
examples that combine art and engineering. They are all built and
deployed using PyS60. Most of them have their origins in the field
of digital art and are implemented by following the rapid prototyping
approach with PyS60.

We hope to illustrate here that by having an application idea or a
concept at the core of your actions, you can turn it into a fully working
application by adopting and combining many of the previously introduced
code examples. The applications we explain span from participatory
and collaborative games to mobile multi-user applications controlling
large displays, from interacting with a robot to physical computing using
sensor boards and applications for controlling remote sound applications.
Finally we show how you might turn your phone into a tool for creating
mobile art.

Again we want to repeat here our message to all you creative and
innovative people out there: use your talent, skills, ideas and energy to
inspire the world! May this chapter and the entire book help you to do so!

11.1 MobiLenin

The MobiLenin system allows a group of people to interact simultaneously
with a multi-track music video shown on a large public display using
their personal mobile phones, effectively empowering the group with
the joint authorship of the video. The system was implemented with a
client–server architecture that includes server-driven, real-time control
of the client UI written in PyS60 to guarantee ease of use. A lottery
mechanism was built in as an incentive for interaction.

246 COMBINING ART AND ENGINEERING

The MobiLenin system was a research project of one of the authors and
his motivation as a music and new media artist and engineer was to create
an interactive technology system that gives the audience the possibility
of engaging in a new way in his live show – simply by interacting with
the music and video on a large screen. The idea is to enhance people’s
concert experience by allowing them to interact with the artist in the
virtual domain on the display.

11.1.1 System Architecture

The MobiLenin system comprises four components:

• a PyS60 client application running on a mobile phone

• an application running on a PC connected to the Internet

• an external server

• a large public display showing the music video.

There are several reasons why personal mobile phones are suitable
user devices for this purpose. First, they are ubiquitous, as practically
everyone has one. Second, they allow anonymous, wireless and mobile
participation in a joint social and public group interaction. Third, the
mobile phone provides a reliable return channel for delivering confiden-
tial user-specific information back to the user, such as a winning lottery
coupon.

The PC application is implemented in Macromedia Director to count
votes, operate the lottery mechanism, initiate the delivery of winning
notifications and control the QuickTime player with its multi-track video
as well as handling all the graphic elements on the public display and the
sound. An external server component consisting of simple PHP scripts is
placed on the Internet to act as a mediator between the public mobile data
network and the PC running the main application. The communication
between the two is done by HTTP. The external component also hosts
the pictures for the lottery coupons to be fetched by the mobile devices
upon initiation by the main application.

The large public display serves as the main interface for the user’s
interaction. Besides showing the music video, it indicates the start and
end of a voting interval and the voting results and notifies the audience
of somebody winning the lottery.

Figure 11.1 shows the state diagram of the system. When the vot-
ing interval starts, it is indicated in the client by an S60 popup note
(Figure 11.2 (a)) and shown on the public display (‘Vote now!’). The
server opens the voting menu in each client, so that a vote is cast by
selecting one of the given menu choices (Figure 11.2 (b)). If a vote is cast,

MOBILENIN 247

Vote on!
note

Client
(Mobile Phone)

Server Public Display

Vote now! Video:
Track 1 on
Track 2 off
Track 3 off
Track 4 off
Track 5 off
Track 6 off

Vote ends
Counting votes

Show Results
Switch Video

track

Start

Menu opens

Select choice

Winning!
note

Coupon
picture opens

25 sec.

25 sec.

6 sec.

Figure 11.1 State diagram of the MobiLenin system

it is acknowledged by the client (Figure 11.2 (c)) and sent to the server. If
the user wins in the lottery, a winning coupon is pushed to the client by
the server and presented to the user (Figure 11.2 (d)).

After a 25-second voting interval is over, ‘Counting votes!’ is shown on
the public display. The server counts the votes and, after six seconds, the
result of the vote is displayed on the large display in form of six graphic
bars, one for each voting option. The length of each bar corresponds to
the proportion of votes each option received (Figure 11.3.). The results
are displayed for 25 seconds and then a new voting interval starts.

The six options in the voting menu correspond to the six tracks in
the multi-track music video. Only one track is visible at a given time,
determined by the collective vote of the previous voting interval. The
change of the video track results in a non-linear perception of the video
on the public display.

The music video employed in the MobiLenin system comprises six
tracks each showing a different performance style of the musician:

• clap: he claps hands to the rhythm of the music (no voice, only slim
music version with no guitar sound and no singing);

• resign: no voice, just gestures, still slim music version with no guitar
sound and no singing;

• guitar: he plays guitar (still no voice, reduced music version with
guitar sound, but no singing);

• sing: he sings and plays guitar (full music version with guitar sound
and singing);

248 COMBINING ART AND ENGINEERING

• crazy: ‘violent’ performance (voice and full music version are on);

• skeleton: he turns into a skeleton (still playing guitar and singing with
full music version on).

Although the performance style of the musician changes, the back-
ground footage stays the same.

(a) (b)

(c) (d)

Figure 11.2 Screenshots of the client’s UI: (a) the voting interval has started; (b) casting a vote; (c) the vote
is acknowledged; (d) a winning lottery coupon is received

MOBILENIN 249

Figure 11.3 The public display

11.1.2 MobiLenin Mobile Client Code

Although you can’t get this code to work since you are missing all
the back-end applications, we want to give a rough explanation here to
highlight how it was possible to rapidly prototype a project like MobiLenin
with PyS60 in a matter of 2–3 days. The script is divided into two parts
for better display (Examples 110 and 111). It might not contain the most
elegant code, nevertheless it worked, served its purpose and shows you
that you can program things in Python in many different ways. You
are already familiar with some lines of code, for example the function
keys() for handling keyboard keys.

The server side (external server) of the MobiLenin system consists of
a few PHP scripts and some data files; the mobile client communicates
with them over GPRS or 3G. At the startup of the application, a tem-
porary id is requested from the external server by an HTTP request,
conn.request("POST", "/fetch id.php"). The id returned by
the fetch id.php script is used for further communication with the
server. It stays valid as long as the mobile client is up and running.

The basic principle of the mobile client is that it polls the external
server every two seconds to know whether to display the voting menu to
the screen, fetch a winning coupon or simply remain waiting. The poll is
done inside the while loop at the bottom of the script by a standard HTTP
GET request, conn.request("GET","/control"+id+".txt"), to
fetch data from a file that resides on the external server. This data file
holds the letters ‘A’, ‘K’, ‘B’ or ‘P’. It is dynamically updated by the
other back-end applications that control the voting cycle and run the
video. With r1 = conn.getresponse() and data1 = r1.read(),

250 COMBINING ART AND ENGINEERING

the received content from the data file is read into the variable named
data1.

Let’s look at the actions that follow based on the received content:

• ‘A’ triggers a pop-up note to the screen saying ‘Voting is on’
(Figure 11.2 (a)), then function voting() is called to display a pop-
up menu with the voting choices (Figure 11.2 (b)) based on the
list choices=[u"Clap", u"Resign", u"Guitar", u"Sing",
u"Crazy", u"Skeleton"]. Resulting from the user’s selection, a
letter between ‘A’ and ‘F’ is sent to the external server to inform the
overall vote count. This is done by a standard HTTP POST request,
conn.request("POST", "/voting phone"+id+".php",
params, headers). Then another pop-up note is triggered to the
user saying ‘Your vote is being processed’ (Figure 11.2 (c)). Once this
is done, the script keeps polling the server every 2 seconds.

• ‘K’ keeps the mobile client polling until a different letter comes in.

• ‘B’ (for beer) or ‘P’ (for pizza) notifies the user about being the
winner of the lottery. A coupon (Figure 11.2 (d)) is fetched inside
the function winning() from the server by the standard Python
function urllib.urlretrieve(url, tempfile) and displayed
to the screen. When the user presses the left softkey, the coupon
disappears and the script keeps polling the server every 2 seconds.

Example 110: MobiLenin (1/2)

import httplib, urllib, appuifw, e32, graphics, key_codes

def keys(event):
global win_state
if event['keycode'] == key_codes.EKeyLeftSoftkey:

win_state=0

def show_picture(picture):
canvas.blit(picture)

def voting():
choices=[u"Clap", u"Resign", u"Guitar", u"Sing", u"Crazy", \

u"Skeleton"]
choice = appuifw.popup_menu(choices, u"Select + press OK:")
choice_conversion={0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
params = urllib.urlencode({'data': choice_conversion[choice], \

'eggs': 0, 'bacon': 0})
headers = {"Content-type": "application/x-www-form-urlencoded", \

"Accept": "text/plain"}
conn = httplib.HTTPConnection("www.yourdomain.com:80")
conn.request("POST", "/voting_phone"+id+".php", params, headers)
conn.close()

def winning(url):
global win_state, coupon_shown

MOBILENIN 251

if not win_state:
if not coupon_shown:

tempfile = "E:\\Python\\resources\\win.jpg"
urllib.urlretrieve(url, tempfile)
coupon_shown = 1
win_state=1
img_win=graphics.Image.open(tempfile)
appuifw.note(u"Winner", "info")
e32.ao_yield()
show_picture(img_win)

appuifw.app.screen='full'
appuifw.app.body = canvas = appuifw.Canvas(event_callback=keys, \

redraw_callback=show_picture)

img_wait=graphics.Image.open(u'E:\\Python\\resources\\wait.jpg')
keyboard_state={}
downs={}
running= 1
show_picture(img_wait)
voting_done = 0
win_state= 0
coupon_shown = 0
id = ""

Example 111: MobiLenin (part 2/2)

if id == "":
conn = httplib.HTTPConnection("www. yourdomain.com:80")
conn.request("POST", "/fetch_id.php")
response = conn.getresponse()
data = response.read()
id = str(data)

while running:
if not win_state:

show_picture(img_wait)
e32.ao_sleep(2.0)
conn = httplib.HTTPConnection("www.yourdomain.com:80")
conn.request("GET", "/ control"+id+".txt")
r1 = conn.getresponse()
data1 = r1.read()
conn.close()

if data1 == 'A':
if not voting_done:

coupon_shown = 0
appuifw.note(u"Voting on", "info")
voting()
show_picture(img_wait)
appuifw.note(u"Your vote is being processed!", "info")
voting_done=1
coupon_shown = 0
show_picture(img_wait)

elif data1 == 'K':
voting_done=0

252 COMBINING ART AND ENGINEERING

elif data1 == 'B':
winning("http://www.yourdomain.com/canvas_beer.jpg")

elif data1 == 'P':
winning("http://www.yourdomain.com/canvas_pizza.jpg")

e32.ao_yield()

Example 112 lists the PHP script, voting phone"+id+".php,
which the mobile client calls when sending the vote to the external
server. The PHP script receives the vote content in the parameter, data,
and stores it in a file called phone1.txt which is read by the other
back-end applications of the MobiLenin system. Each mobile client con-
nected to the MobiLenin system has its corresponding data files and PHP
scripts on the external server.

Example 112: MobiLenin server-side PHP script

<?php
$data = file_get_contents('php://input');
$filename = 'phone1.txt';
$handle = fopen($filename, 'a+');
fwrite($handle, $data);
fclose($handle);
?>

With this setup it is possible to run MobiLenin with many users
at the same time as a multi-user entertainment game. A test with
75 simultaneous users was successfully carried out. For those inter-
ested in reading more about this project there is a 10-page research
paper ([Scheible and Ojala 2005]), some documentation and videos at
www.leninsgodson.com/mobilenin.

11.2 Manhattan Story Mashup

Manhattan Story Mashup is an urban storytelling game, designed by
the authors of this book, that combines mobile phones, the web and a
large public display into interactive, collaborative street art. The game is
based on real-time interaction between mobile phone and web users. A
storytelling tool on the game’s website allowed anybody to write stories
that were illustrated in real-time by almost two hundred street players in
New York, taking photos with Nokia N80 camera phones. Once a story
was fully illustrated, it was presented on a large public display in Times
Square (see Figure 11.4).

The street players were given points according to how many individual
nouns – which were extracted from the web stories – they could illustrate
successfully. The success was validated by another street player who

MANHATTAN STORY MASHUP 253

Figure 11.4 Manhattan Story Mashup in Times Square

was asked to match the newly taken photo with the original noun in a
multiple-choice test. If she was able to match the correct noun with the
photo, both the guesser and the illustrator were awarded points.

The game proved to be fun and engaging. During 90 minutes of
playing, the street players took 3142 photos and made 4529 guesses to
validate each other’s photos. In total, 115 stories were written by the
web players. While illustrating these stories, the street players visited 197
distinct GSM cells in midtown Manhattan.

A major factor of the success was a smooth and fast-paced user
experience. The player had to think fast and act fast to find a suitable
target in the urban environment which somehow represented a given
noun. With one click, the user could accept a noun for illustration. After
this, a countdown timer was shown which gave the player 90 seconds to
shoot a suitable photo just by clicking the Select key once. The photo was
then automatically uploaded to the server and the game client returned
to show the list of available nouns. Thus, it was possible to play the game
just by repeating this two-click, choose-and-shoot cycle.

Both the mobile client and the game server were implemented in
Python. Starting from a vague game concept and no code at all, it took
approximately three months to implement the client, the server and a
highly dynamic website by one of the authors. The first prototype of
the game client was finished in a weekend. The prototype was then
field-tested and the second, improved prototype was implemented in two

254 COMBINING ART AND ENGINEERING

weeks based on experiences from the first version. After this, another
field-test was organized and the remaining rough edges were polished off
to produce the final game client.

Without rapid prototyping and field-tests, it would have been impossi-
ble to achieve such a smooth user experience. Given only three months’
development time, PyS60 was a perfect tool for the task. Being able
to use the same language on both the client and the server effectively
was a major benefit as well. As discussed in Section 10.3.3, the game
client included a mechanism for automatic updating which ensured that
last-minute bugs could not spoil the experience.

When implementing a system that orchestrates 200 mobile phone
clients, a public web application and a large public display in real time, it
is crucial that the implementation language does not increase complexity
by imposing arbitrary constraints or conventions. With Python, all the
pieces came together on the first try – something that anyone with tight
schedules can appreciate.

An important success factor was that the client looked and felt like
a game. Instead of using the standard user interface elements from the
appuifw module, we implemented a custom-made set of UI elements,
which were used to build the user interface for the game client (see
Figure 11.5).

(a) (b) (c)

Figure 11.5 Manhattan Story Mashup user interface

There is nothing particularly difficult in making custom UI elements
in PyS60. In our game client, the UI elements are drawn in the redraw
function of the canvas, in a similar way to many examples in Chapter 5.
The keyboard event handlers are used to modify some variables that affect
how the element is drawn on the screen, for instance, which line on the
list should be highlighted. This is similar to the UFO Zapper example in
Section 5.5.

MANHATTAN STORY MASHUP 255

In Example 113, we show how the list element in Figure 11.5(a), is
created. Although Example 113 is just an excerpt of a larger program, it
should give you an idea of how to create custom UI elements.

Example 113: Manhattan Story Mashup custom list element

def list_redraw(self):
self.img.rectangle(self.area, fill = WHITE)
x = self.area[0] + 10
y = self.area[1] + LIST_FONT[1]

if len(self.list):
sel_x = self.area[0]
sel_y = self.area[1] + self.idx * (LIST_FONT[1] + 5)
self.img.rectangle((sel_x, sel_y,\

self.area[2], sel_y + LIST_FONT[1] + 4), fill = YELLOW)

else:
self.img.text((x, y), u"[empty list]", font = LIST_FONT,\

fill = BLUE)

for item in self.list[self.first_vis: self.first_vis +
self.nof_visible]:

txt = u"%s" % self.filter(item)
self.img.text((x, y), txt, font = LIST_FONT, fill = BLUE)
y += LIST_FONT[1] + 5

if self.first_vis + self.nof_visible < len(self.list):
x = self.area[2] - 30
y = self.area[3] - 30
self.img.polygon((x, y, x + 20, y, x + 10, y + 10), fill = BLUE)

if self.first_vis > 0:
x = self.area[2] - 30
y = self.area[1] + 20
self.img.polygon((x, y, x + 20, y, x + 10, y - 10), fill = BLUE)

First, we clear the list area in white. Then, we position the coordinates
x and y at the upper left corner of the list area. Depending on which
item in the list is selected, a yellow rectangle is drawn to depict the
highlighted element. If there are no elements in the list, the text ‘[empty
list]’ is shown.

After this, we loop through the visible list elements and draw them on
the screen using the Image.text() function. During each iteration, the
y coordinate is increased, so each item is drawn on a separate line.

If the list contains more items than those which are visible, a small
triangle is drawn to notify the user that she can go up or down the list.
One such triangle is visible in Figure 11.5(c).

As you can see, there is no magic in making custom UI elements.
Although this approach requires much more work compared to using the
standard UI elements from the appuifw module, it allows you to tailor
the user interface to your particular application. If done well, this can

256 COMBINING ART AND ENGINEERING

increase usability and lead to a smoother user experience. In any case,
you are guaranteed to get a distinctive look for your program!

11.3 MobileArtBlog – Image-Composition Tool

The image-composition tool described in this section allows the user to
compose and draw images, as seen in Figure 11.6. With the camera and
navigation keys, a photo can be placed multiple times on the canvas
and its size can be changed. Alternatively the photo can leave color
traces by moving it on the canvas using the navigation keys. At any
time during the composition process, a new photo can be taken. The

Figure 11.6 A collage of MobileArtBlog images

MOBILEARTBLOG – IMAGE-COMPOSITION TOOL 257

composed image is stored in the gallery of the phone and is also uploaded
to the Internet by pressing only one button. The application was created
by one of the authors for his MobileArtBlog concept. He uses it during
his travels when he is stimulated by things he sees and experiences
in different cities, places and situations, trying to capture the moment
and turn it into a memorable ‘art piece’ (mobile art). Once the image
is composed, it is posted directly over the mobile data network to his
MobileArtBlog website with metadata such as the name of the place and
its GPS coordinates. The GPS data are read by way of Bluetooth from an
external GPS device. A large collection of created images can be seen
at www.mobileartblog.org with their originating positions on a Google
map view.

Let’s look at the code to see how the application works. We list the
mobile-client code, as well as the server-side PHP scripts that demonstrate
how Python can easily be used to upload an image file to a URL.
Finally we show how PyS60 can be used to insert data into a MySQL
database.

11.3.1 MobileArt Client Code

Most of the code is similar to the examples in Chapter 5 regarding drawing
graphics primitives and images and controlling graphic movements and
the use of the camera. The MobileArtBlog is a combination of those
applications with some additional functionality.

Example 114 presents the first part of the MobileArt client. It shows
mainly the key-handling functions and some initialization logic. Example
115 presents most of the image-composing logic.

Example 114: MobileArtBlog (1/3)

import camera, appuifw, e32, graphics, key_codes

keyboard_state={}
downs={}

def handle_event(event):
global downs,keyboard_state
if event['type'] == appuifw.EEventKeyDown:

code=event['scancode']
if not key_is_down(code):

downs[code]=downs.get(code,0)+1
keyboard_state[code]=1

elif event['type'] == appuifw.EEventKeyUp:
keyboard_state[event['scancode']]=0

def key_pressed(scancode):
global downs
if downs.get(scancode,0):

downs[scancode]-=1

258 COMBINING ART AND ENGINEERING

return True
return False

def key_is_down(scancode):
global keyboard_state
return keyboard_state.get(scancode,0)

def quit():
if appuifw.query(u"Save image","query") == True:

background.save('e:\\Images\\art_picture.jpg')
appuifw.app.set_exit()

def handle_redraw(rect):
canvas.blit(background)

appuifw.app.body=canvas=appuifw.Canvas(event_callback = handle_event,\
redraw_callback = handle_redraw)

appuifw.app.screen='full'
appuifw.app.exit_key_handler=quit
image_size = canvas.size
background = graphics.Image.new(image_size)
transfer_pic = graphics.Image.new(image_size)
transfer_pic.clear(0xffffff)
transfer_pic.save('e:\\transferpic.jpg')
picture = graphics.Image.new((50,50))
picture.clear(0x000000)
x = 100
y = 100
picture_size = 50
running = 1
drawing = 0
switch = 0
e32.ao_yield()

The basic concept of composing the art image is that a newly taken
picture is stored as an Image object named picture and is drawn on
the canvas at a certain position on top of the background image object,
named transfer pic. At any time, when the user presses the Select
key, the background image object merges with the photo, so the photo
is ‘stuck’ to the background, and is saved. The new background image
object is then drawn to the canvas and the photo (in form of the picture
image object) can be freely moved to the next position on the canvas
using the navigation keys and so on. The size of the picture object can
be changed with the 4 and 7 keys. The entire screen can be filled and the
new art image composed.

Example 115: MobileArtBlog (2/3)

while running:
if drawing == 0:

background.clear(0xffffff)
background.blit(transfer_pic,scale=1)

MOBILEARTBLOG – IMAGE-COMPOSITION TOOL 259

background.blit(picture,target=(x,y,x+picture_size,
y+picture_size),scale=1)

handle_redraw(())
e32.ao_yield()

if switch == 1:
picture = camera.take_photo(size = (640,480))

if key_is_down(key_codes.EScancodeLeftArrow): x -= 2.0
elif key_is_down(key_codes.EScancodeRightArrow): x += 2.0
elif key_is_down(key_codes.EScancodeDownArrow): y += 2.0
elif key_is_down(key_codes.EScancodeUpArrow): y -= 2.0
elif picture_size > 10:

if key_is_down(key_codes.EScancode4): picture_size -= 2
elif picture_size < 90:

if key_is_down(key_codes.EScancode7): picture_size += 2
elif key_pressed(key_codes.EScancodeLeftSoftkey): switch = 1
elif key_pressed(key_codes.EScancode6): drawing = 1
elif key_pressed(key_codes.EScancode9):

background.save('e:\\transferpic.jpg')
transfer_pic = graphics.Image.open('e:\\transferpic.jpg')
drawing = 0

elif key_pressed(key_codes.EScancodeSelect):
background.save('e:\\transferpic.jpg')
transfer_pic = graphics.Image.open('e:\\transferpic.jpg')
switch = 0

elif key_pressed(key_codes.EScancodeHash):
background.save('e:\\transferpic.jpg')
transfer_pic = graphics.Image.open('e:\\transferpic.jpg')
upload()

To implement the photo leaving traces on the canvas, the background
image object, transfer pic, is prevented from being redrawn through
setting the variable drawing to 0. When the user presses the hash button,
the art image is uploaded to the MobileArtBlog website by the upload()
function (Example 116).

Example 116 presents the third part of the MobileArt client, which
deals mainly with the uploading of the art image to the MobileArtBlog
website and its MySQL database by two HTTP POST requests:

conn1.request("POST", "/upload_to_url.php", chunk, headers)
conn2.request("POST", "/insert_artblog.php", params, headers)

In the first HTTP POST request, the art image – stored in the variable
chunk – is handed over to the PHP script named upload to url.php
(see Example 117), which saves the image to the server and returns its
dynamically created filename as a URL back to the PyS60 script to the
variable picture url.

In the second HTTP POST request, some data such as location name,
image URL and GPS data are first encoded and stored to the variable
named params and are then pushed into a MySQL database by the PHP
script named insert artblog.php (see Example 118).

260 COMBINING ART AND ENGINEERING

Example 116: MobileArtBlog (3/3)

upload():
text = u'name of location'
lat = GPS data from external device
lon = GPS data from external device
f = open(u'e:\\transferpic.jpg',"rb")
chunk = f.read()
f.close()

headers = {"Content-type": "application/octet-stream",
"Accept": "text/plain"}

conn1 = httplib.HTTPConnection("www.myserver.com")
conn1.request("POST", "/upload_to_url.php", chunk, headers)
response = conn.getresponse()
picture_url = response.read()
conn1.close()

params = urllib.urlencode({'data': text , \
'eggs': picture_url, \
'bacon': lat, 'noodle': lon})

headers = {"Content-type": \
"application/x-www-form-urlencoded",\
"Accept": "text/plain"}

conn2 = httplib.HTTPConnection("www.myserver.com")
conn2.request("POST", "/insert_artblog.php", params, headers)
conn2.close()
quit()

11.3.2 Server-side PHP Scripts

The server of the MobileArtBlog runs PHP and holds the PHP files in
Examples 117 and 118. The first POST request from the phone passes
the art image in binary form from the variable chunk to the script
in Example 117, which stores it on the server in the directory named
pictures. Its filename, which becomes part of the image’s URL, is
created dynamically using the timestamp and a random number. With
echo "".$filename; the filename of the art image is returned to the
PyS60 script.

Example 117: Server-side PHP script

<?php
// this file's name is upload_to_url.php
// read the incoming image data handed over from PyS60 phone

$chunk = file_get_contents('php://input');

// create a filename based om time and a random number
$timestamp = time();
$random_id = rand(0, 10);
$filename = 'Pic'. $timestamp .$random_id .'.jpg';

ARDUINOBT MICRO-CONTROLLER BOARD 261

// write the file to the server into the directory pictures
$filepathname = "pictures/$filename";
$handle = fopen($filepathname, 'wb');
fputs($handle, $chunk, strlen($chunk));
fclose($handle);

// return the filename
echo " ".$filename;
?>

11.3.3 Inserting Data into a MySQL Database

The structure of the MySQL database table that is used for the MobileArt-
Blog contains five fields that are named blog text,blog datetime,
blog pic url, blog lon, blog lat. The second POST request
passes the encoded contents sent by the PyS60 script to the PHP script in
Example 118, which inserts them into the fields in the table.

Example 118: PHP script for MySQL database insert

<?php
// this file's name is insert_artblog.php
// Get the incoming params sent by the PyS60 phone

$data = $_POST['data'];
$eggs = $_POST['eggs'];
$bacon = $_POST['bacon'];
$noodle = $_POST['noodle'];

include "_mysql.php";

$sql = "INSERT INTO artblog (blog_text, blog_datetime,
blog_pic_url, blog_lon, blog_lat)
VALUES ('$data', NOW(), '$eggs', '$bacon', '$noodle')";

db_query($insert, $sql);
?>

11.4 ArduinoBT Micro-Controller Board

As mentioned in Chapter 7, it is possible to connect your phone to a
micro-controller. The ‘ArduinoBT board’ (Figure 11.7) is an example of
a micro-controller board with Bluetooth extension chip that offers serial
port communication.

Arduino is an open-source physical computing platform based on a
simple I/O board and a development environment for writing Arduino
applications (www.arduino.cc). The Arduino programming language is
an implementation of Wiring (http://wiring.org.co), based on Processing
(www.processing.org). It is easy to learn and quick to program. This
makes it an ideal complement for PyS60 to do rapid prototyping of

262 COMBINING ART AND ENGINEERING

Figure 11.7 ArduinoBT board and Nokia N80

physical computing applications. It can serve as a mediating technology
between sensors, motors and other actuators, providing access to the
physical world.

The mobile phone acts as a gateway device to the Internet giving
access to the digital and virtual world. As the Arduino board is small,
light and battery-powered, it is suitable to be taken anywhere, like the
mobile phone itself.

In this section, we describe the steps to connect a phone over Bluetooth
to the ArduinoBT board. The PyS60 code is given, as well as the Arduino
code that runs on the board. The Arduino software tool has a built-in
editor for writing the Arduino code. When you press an upload button,
the code is pushed to the board and can be executed.

The example application we provide here simply lets the user switch
an LED light on and off on the Arduino board. Each time the LED changes
its status, the board sends a confirmation (on or off) message back to the
phone. This is a simple example but it shows you the basic principles
for communicating with the board using the phone. It is up to you to do
great things with it.

All you need for this example, besides the ArduinoBT board, is a
battery between 1.2 V and 5 V for powering the board and a 5 mm LED
that you stick into the board at pin 13 and pin GND.

ARDUINOBT MICRO-CONTROLLER BOARD 263

11.4.1 Setting Up the ArduinoBT Environment
To set up the various components involved in this example, such as
installing the Arduino software tool and configuring the Bluetooth settings
on your computer, you need to take the following steps (this description
was valid in June 2007 and is for a Mac, but similar steps apply for
Windows PCs, too).

1. Create a Bluetooth serial port on your computer:

1. Go to System preferences. Select ‘Bluetooth icon’.

2. Select ‘Devices Tabs’ and press ‘Set Up New Device’.

3. Press ‘Continue’.

4. For device type, select ‘Any Device’.

5. ARDUINOBT should show up in a list, select it and press ‘Continue’.

6. Type passkey ‘12345’ (this is the default key set up by the factory).

7. Press ‘Continue’ (then you are done with the set up).

8. In ‘Devices’, you should now see ARDUINOBT (this is the default
name set up by the factory, but you can change it if you wish).

9. Select the name ARDUINOBT.

10. Press ‘Edit Serial Ports’. There you can see the name of your new
port, for example, ARDUINOBT-bluetoothseri-1.

2. Set up the Arduino software

1. Download the Arbuino software from www.arduino.cc and install
it on your computer.

2. Open it and select Tools.

3. Select ‘microcontroller (mcu)’ and set it as ‘atmega168’.

4. Select Tools.

5. Select ‘Serial port’ and then the Bluetooth port that you created
earlier, for example, /dev/tty.arduinobt-bluetoothseri-1.

Now you need to write your code for the board using the Arduino
software. (There are plenty of tutorials available on how to do this, for
example, at www.arduino.cc/.)

3. Upload your Arduino code to the board

1. Press the Reset button on the Arduino board.

264 COMBINING ART AND ENGINEERING

2. Press the ‘Upload to I/O board’ button on the Arduino software tool
UI.

3. After a moment, the Arduino software tool should show ‘Upload
done’.

4. Now you can start your Python script on the phone, connect over
Bluetooth to the Arduino board and test your functionality.

11.4.2 Writing Code in the ArduinoBT Environment
In a similar way to Example 59 of Chapter 7, Example 119 first scans
for Bluetooth devices until we find ARDUINOBT, the ‘nickname’ of the
Arduino board and then selects it. This connects the phone to the Arduino
board by the serial port using RFCOMM communication. The board can
receive data from the mobile phone and send data back to the mobile
phone.

The function bt send data1() sends the ASCII character ‘1’ to the
board to switch the LED on. The function bt send data2() sends the
ASCII character 0 to the board to switch the LED off. Each time the board
receives a ‘1’ (49 in decimal format), it sends ‘1’ back to the phone which
displays a note dialog ‘LED on’; similarly, it sends back ‘0’ (48 in decimal
format) and the phone displays ‘LED off’.

Example 119: LED on/off

import socket, e32, appuifw

def choose_service(services):
names = []
channels = []
for name, channel in services.items():

names.append(name)
channels.append(channel)

index = appuifw.popup_menu(names, u"Choose service")
return channels[index]

def connect():
global sock
address, services = socket.bt_discover()
channel = choose_service(services)
sock = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
sock.connect((address, channel))

def receive():
global sock
data = sock.recv(1)
if data == "1":

appuifw.note(u"LED on ", "info")
elif data == "0":

appuifw.note(u"LED off ", "info")

def bt_send_data1():

ARDUINOBT MICRO-CONTROLLER BOARD 265

global sock
sock.send("1")
receive()

def bt_send_data2():
global sock
sock.send("0")
receive()

def exit_key_handler():
print "socket closed"
sock.close()
app_lock.signal()

app_lock = e32.Ao_lock()

appuifw.app.menu = [(u"LED on", bt_send_data1),
(u"LED off", bt_send_data2),
(u"Connect", connect)]

appuifw.app.exit_key_handler = exit_key_handler
app_lock.wait()

Example 120 contains the code that runs on the Arduino board.

Example 120: Arduino code LED on/off

int LED = 13; // pin for LED
int RESET = 7; //reset pin for bluetooth
int val = 0; // initial serial port data

void ledOFF() {
digitalWrite(LED, LOW);

}

void ledON() {
digitalWrite(LED, HIGH);

}

void reset_bt(){
// Reset the bluetooth interface
digitalWrite(RESET, HIGH);
delay(10);
digitalWrite(RESET, LOW);
delay(2000);

}

void setup() {
reset_bt();
pinMode(LED,OUTPUT);
pinMode(RESET,OUTPUT);
Serial.begin(115200);

}

void loop () {
val = Serial.read();
if (val != -1) {

266 COMBINING ART AND ENGINEERING

if (val == 49) {
ledON();
Serial.print(1); // feedback to mobile phone that LED is on

} else if (val == 48) {
ledOFF();
Serial.print(0); // feedback to mobile phone that LED is off

}
}

}

11.5 Controlling Max/MSP with a Phone

A significant number of people in the art and design community use
tools such as Pure Data (www.puredata.org), vvvv (http://vvvv.org) or
Max/MSP or Jitter (www.cycling74.com) for interactive audiovisual appli-
cations and art installations. vvvv is especially good for real-time video
synthesis that allows interaction with many users simultaneously.

These tools provide a graphical programming environment for music,
audio and multimedia. All of them allow rapid programming of powerful
audiovisual applications running on the computer or a server being
controlled through multimodal interfaces. We want to show here how to
use your mobile phone as a user interface for such tools. For practical
reasons on our side, we have chosen Max/MSP to get the basic ideas
across, but you can take the same approach when using one of the others
as well.

First we describe how to use Bluetooth RFCOMM to set up the
communication between PyS60 on the phone and Max/MSP on your
computer that will allow you to switch a sound on and off and change
its frequency. On the phone, we use a graphical switch and slider to
manipulate the sound by sending relevant control data to Max/MSP.

We then describe a mobile multi-user scenario which allows multiple
people to interact over WiFi instead, meaning that several users at the
same time can control parameters of a sound generator using the same
Max/MSP application.

11.5.1 Connecting a Phone to Max/MSP using Bluetooth RFCOMM
The patch of the Max/MSP graphical programming environment is shown
in Figure 11.8.

An object with the text ‘serial a 9600’ handles the serial port commu-
nication in Max/MSP. When you start Max/MSP, this object opens one
of the free serial ports of your computer. (You might have to check some
additional parameters in your computer’s Bluetooth setting if it doesn’t
work straight away.)

We cannot explain here the full functionality of the patch in detail,
but the basic idea is that when the serial port receives the string ‘51’ over
Bluetooth from the phone, the frequency of the sound produced by the

CONTROLLING MAX/MSP WITH A PHONE 267

Figure 11.8 Max/MSP patch using Bluetooth

268 COMBINING ART AND ENGINEERING

sound generator increases. Receiving the same string again increases the
frequency. Receiving the string ‘52’ decreases the frequency. When the
patch starts up there is no sound to be heard, until the sound is switched
on. This is done by sending the string ‘53’ from the phone. To switch off
the sound, the string ‘53’ must be sent by the phone again.

In this case we are not using the built-in UI elements of PyS60, but
instead we build our own graphical user interface (Figure 11.9) made up
of JPEG images. We have a button for switching the sound on and off and
a slider to change the frequency of the generated sound on the Max/MSP
application. This interface uses six images (Figure 11.10).

Figure 11.9 Graphical slider and switch for sound control

The code is divided into two parts (Examples 121 and 122). They need
to be combined into one script to work. The first 20 lines of code are
used to turn the graphical elements into ready-to-use image objects (see
Chapter 5).

Whenever the screen must be redrawn (for example, when the position
of the slider changes), we call the function handle redraw() in which
we use the concept of double buffering by copying all the graphical
elements e.g. img.blit(slidershaft, target = (0,0,w,h)) and
img.blit(contr, target=(142,y pos contr), mask=
contrMask) to the img object. We then blit the img object to the
canvas:

canvas.blit(img, target = (0,0,w,h), scale = 1)

CONTROLLING MAX/MSP WITH A PHONE 269

(a)

(b)

(d)

(c)

(e)

(f)

Figure 11.10 The images for slider and switch: (a) background, background.jpg,
(b) slider, controller.jpg, (c) 1-bit mask for the slider, controller mask.png,
(d) switch on, button red.jpg, (e) switch off, button dark.jpg, (f) 1-bit mask for the
switch, button mask.png

To connect to Max/MSP over Bluetooth, we use the function con-
nect() (Example 122), which includes the same code as in previous
Bluetooth RFCOMM examples, basically setting up a socket and scanning
for Bluetooth devices. For programming keyboard keys, we use the code
that was described in detail in Section 5.2.2.

Example 121: Max/MSP using Bluetooth

import appuifw, e32, graphics, key_codes, socket

sound = 0
y_pos_contr = 100

slidershaft = graphics.Image.open("e:\\background.jpg")

makeMaskTemp = graphics.Image.open('e:\\controller_mask.jpg')
makeMaskTemp.save("e:\\controller_mask.png", bpp=1)
contrMask = graphics.Image.new(size = (97,149),mode = '1')
contrMask.load("e:\\controller_mask.png")
contr = graphics.Image.open("e:\\controller.jpg")

makeMaskTemp = graphics.Image.open('e:\\button_mask.jpg')
makeMaskTemp.save("e:\\button_mask.png", bpp=1)
buttnMask = graphics.Image.new(size = (111,78),mode = '1')
buttnMask.load("e:\\button_mask.png")
buttnOn = graphics.Image.open("e:\\button_red.jpg")

270 COMBINING ART AND ENGINEERING

buttnOff = graphics.Image.open("e:\\button_dark.jpg")

def keys(event):
global y_pos_contr, sound
if event['keycode'] == key_codes.EKeyDownArrow:

if y_pos_contr < 260 :
y_pos_contr = y_pos_contr + 5
sending(str(3))

if event['keycode'] == key_codes.EKeyUpArrow:
if y_pos_contr > 0 :

y_pos_contr = y_pos_contr – 5
sending(str(4))

if event['keycode'] == key_codes.EKeySelect:
if sound == 1:

sound = 0
else:

sound = 1
sending(str(5))

handle_redraw(())

The ‘Select’ key is used to switch the sound on and off. Each time
the ‘Select’ key is pressed we send the string ‘5’ in ASCII format with
sending(str(5)) to Max/MSP. ‘5’ is equal to 53 in decimal format
and ‘53’ is used in the Max/MSP patch.

The ‘ArrowUp’ key is used to increase the frequency of the sound
generated by the Max/MSP application. When that key is pressed we send
the string ‘3’ in ASCII with sending(str(3)) which is equal to ‘51’ in
decimal format used by Max/MSP. Also the y-position of the controller
image is changed by 5 pixels with y pos contr = y pos contr –5,
making it blit to the canvas slightly further up. The same logic is used
for decreasing the frequency of the generated sound at the Max/MSP
application with the ‘ArrowDown’ key instead (sending the string ‘4’ in
ASCII (‘52’ in decimal) as well as changing the y-position of the controller
image downwards on the screen).

Example 122: Max/MSP using Bluetooth (2/2)

def handle_redraw(rect):
global sound, img, w,h
img.blit(slidershaft, target = (0,0,w,h))
img.blit(contr, target=(142,y_pos_contr), mask=contrMask)
if sound == 1:

img.blit(buttnOn, target=(8,328), mask=buttnMask)
else:

img.blit(buttnOff, target=(8,328), mask=buttnMask)
canvas.blit(img, target = (0,0,w,h), scale = 1)

def choose_service(services):
names = []

CONTROLLING MAX/MSP WITH A PHONE 271

channels = []
for name, channel in services.items():

names.append(name)
channels.append(channel)

index = appuifw.popup_menu(names, u"Choose service")
return channels[index]

def connect():
global sock
address, services = socket.bt_discover()
channel = choose_service(services)
sock = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
sock.connect((address, channel))

def sending(data):
global sock
sock.send(data)

def quit():
app_lock.signal()

canvas=appuifw.Canvas(event_callback=keys, redraw_callback=handle_redraw)
appuifw.app.body=canvas
appuifw.app.screen='full'
w, h = canvas.size
img = graphics.Image.new((w,h))
appuifw.app.exit_key_handler=quit
handle_redraw(())
connect()
app_lock = e32.Ao_lock()
app_lock.wait()

11.5.2 Connecting a Phone to Max/MSP using WiFi

When connecting a phone to Max/MSP using WiFi, we can use almost
the same files as described in Section 11.5.1 about using Bluetooth. A
few things are different and we explain the differences here.

We need to remove the connect() function and replace the code of
the sending() function with the code in Example 123.

Example 123: Max/MSP using TCP/IP

def sending(data):
HOST = '192.168.1.100' # The remote host
PORT = 9000 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(data)
print "data send:", data
s.close()

We create a TCP/IP socket with s = socket.socket(socket.AF
INET, socket.SOCK STREAM) and use it to connect with s.connect

272 COMBINING ART AND ENGINEERING

((HOST, PORT)) to an IP socket on our computer identified by the IP
address (HOST). We choose port 9000 for communication. Sending the
control strings ‘51’, ‘52’ and ‘53’ is done through s.send(data).

In Figure 11.11, we can see the patch for Max/MSP. There is only
one major difference between it and the Bluetooth diagram (Figure 11.8).

Figure 11.11 Max/MSP patch using TCP port

OPENSOUND CONTROL 273

The TCP version uses the mx j.net.tcp.rec@port 9000 object to
receive the control strings, instead of the serial a 9600 object. The
mx j.net.tcp.rec@port9000 object handles socket communication
over TCP in Max/MSP and is one of the simplest ways to handle HTTP
transfers.

Once the Max/MSP application is running, the computer is ready to
send and receive data over the socket. It is important that the commu-
nication is done through port 9000 using the current IP address of your
computer. This means the port must be open and firewall settings must
be set accordingly.

Environment B in Chapter 8 describes how to use your local computer
to work as a test server which is accessed from Internet. But the scenario
described here does not directly use Environment B. Instead, we want
to set up a local WiFi network using a wireless broadband router to
which we directly connect the computer running Max/MSP, as well as
connecting all the mobile devices.

This scenario has many advantages. For example, you can run mobile
multi-user applications over WiFi in any place without having to have
a connection to the Internet, simply using your computer as a server for
socket communication, to which the mobile devices connect. Further,
this setup has the advantage that the wireless broadband router can be
manually configured to assign an IP address to the computer. Therefore
we know the IP address of our computer inside the local WiFi network
and can use it to hardcode the destination address for ‘server’ socket com-
munication which we need to specify in our PyS60 code (to successfully
connect the mobile devices to the computer).

In the given scenario, each connected mobile device can switch the
sound on and off as well as changing the frequency of the sound. This
means that it can become messy when many users want to control one
sound at the same time. There are many solutions to make the application
more interesting and useful, such as having a controllable sound source
with multiple parameters available for controlling different aspects of the
one sound. Each mobile user can then control different parameters. But
we want to leave it up to the readers of this book to expand the examples;
this example just explains some basic principles.

Section 11.6 explains an important protocol for handling multi-user
issues in the field of digital music: OpenSoundControl OSC.

11.6 OpenSound Control

OpenSound Control (OSC, www.cnmat.berkeley.edu/OpenSound
Control) is a protocol for communication among computers, sound
synthesizers and other multimedia devices. It is optimized for modern
networking technology. Often it is used for multi-user applications and

274 COMBINING ART AND ENGINEERING

it is frequently deployed by the arts and design community. Interest in
using mobile phones as part of multi-modal interfaces is on the rise.

We can use OSC with PyS60 by installing an additional Python library
called OSCmobile.py to our phone into a folder named python/Lib
on our memory card (if the folder doesn’t exist, you can create it). You can
download the library from www.mobilenin.com/pys60/oscmobile.htm.
This library is based on the OpenSound Control library implementa-
tion for Python by Daniel Holth and Clinton McChesney, found at
http://wiretap.stetson.edu.

In this example, we can use the Bluetooth code from Examples 121
and 122. All we need to change is to import the module OSCmobile
and replace the code of the function sending() with the code in
Example 124.

Example 124: OSC for mobile phones

import OSCmobile

def sending(data):
global sock
message = OSCmobile.OSCMessage()
message.setAddress("/phone/user1")
message.append(data)
sock.send(message.getBinary())

This allows you to run exactly the same application setup as in
Examples 121 and 122, except that you are now using OSC to encode
messages before sending them to Max/MSP on the computer over Blue-
tooth.

In a multi-user scenario, different phones can use different names, for
example user2 and user3, inside the address string of the OSC message
to distinguish by which phone the message has been sent and to address,
for instance, individual sound parameters.

Please check Chapter 7 to see how to receive data from a computer
over Bluetooth RFCOMM. If your mobile phone receives OSC data, all
you have to do is to use string handling (described in Chapter 4) to
decode the OSC message and handle the OSC message contents further.
To use OSC over TCP sockets for a mobile multi-user scenario, you could
replace the code of function sending() in Example 123 with the code
of Example 124.

11.7 Robotics

With a little creativity, a modern mobile phone can be used as a compact
and capable robot brain. Besides having respectable computing power for
an embedded device, the phone has the basic sensory functions built-in:

ROBOTICS 275

the camera can function as eyes and the microphone as ears for the robot.
Because of its small size, the phone can easily be mounted on various
platforms for locomotion, which may be controlled, for instance, over
Bluetooth.

Nowadays, using cheap off-the-shelf parts, one can start experimenting
on robotics without any soldering. This approach was taken by a course on
Artificial Intelligence that was organized by the Department of Computer
Science at the University of Helsinki in 2007. In this course, a Nokia
N80 mobile phone, which served as an eye for the robot, was mounted
on a Roomba robotic vacuum cleaner – the resulting chimera is shown
in Figure 11.12. Since one can control Roomba remotely by sending
commands to it over a Bluetooth serial port, it is possible to build a fully
autonomous, visually guided robot based on these two widely available
components.

Figure 11.12 Nokia N80 mounted on a Roomba robotic vacuum cleaner

Students on the course were given a task to write a program that drives
the robot through two gates, around a single pole and return through the
gates back to the home base. To make the task easier for the students, the
control program for the robot ran on a PC, which got a constant stream of
photos from a PyS60 script running on the N80. Based on these visuals,
the program was supposed to control the robot so that it stayed on track.

276 COMBINING ART AND ENGINEERING

In further experiments, Roomba was controlled by the N80 and a
PyS60 program in a totally autonomous manner. The phone controlled
Roomba by Bluetooth using Roomba’s proprietary, binary protocol for
communication. The PyS60 program was able to take full control of
the robot, as the protocol includes commands for driving the robot and
collecting data from its sensors (see Examples 125 and 126).

Example 125: Roombatics (1/2)

import socket, time, struct

def bytecmd(cmd,*args): # args are bytes
urn struct.pack("B%dB" % len(args), cmd, *args)

def intcmd(cmd,*args): # args are big endian ints
return struct.pack(">B%dh" % len(args), cmd, *args)

print "OPENING BLUETOOTH SOCKET TO ROOTOOTH"
sock = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
address, services = socket.bt_discover()
sock.connect((address,1))
roomba = sock.makefile("rw",0)

print "PUTTING ROOTOOTH INTO COMMAND MODE"
roomba.write("+++\r")
time.sleep(0.1)
if roomba.read(6) != "\r\nOK\r\n":

raise Exception("+++ in failed")

print "ASKING ROOTOOTH TO TALK TO ROOMBA"
roomba.write("ATMD\r")
time.sleep(0.1)
if roomba.read(6) != "\r\nOK\r\n":

raise Exception("ATMD failed")

print "SETTING ROOMBA TO SAFE MODE"
roomba.write(bytecmd(128))
time.sleep(0.1)
roomba.write(bytecmd(130))
time.sleep(0.1)

Example 126: Roombatics (2/2)

print "START DRIVING 250mm/s WITH RADIUS 2000mm LEFT"
roomba.write(intcmd(137,250,2000))
time.sleep(0.1)

print "GETTING SENSOR READING BYTES"
roomba.write(bytecmd(142,0))
time.sleep(0.1)
sensor_str = roomba.read(26)
sensor_bytes = ",".join(map(str,map(ord,sensor_str)))

time.sleep(1) # keep driving for an extra second

SUMMARY 277

print "STOPPING – DRIVING WITH VELOCITY 0"
roomba.write(intcmd(137,0,0))
time.sleep(0.1)

print "BACK TO ROOTOOTH COMMAND MODE"
roomba.write("+++\r")
time.sleep(0.1)
if roomba.read(6) != "\r\nOK\r\n":

raise Exception("+++ back failed")

print "ROOTOOTH HANGUP"
roomba.write("ATDH\r")
time.sleep(0.1)
roomba.close()
print "THE END"

Examples 125 and 126 include a simple PyS60 script that drives
Roomba forward, requests some sensor readings from it and stops. Besides
showing what the Roomba control code looks like in practice, they also
illustrate how one can use a binary protocol to communicate with a Blue-
tooth device. This is done using the module struct, which converts
Python values to byte sequences according to the given format. You can
find more information about this module in the Python Library Reference.

11.8 Summary

We hope that by going through these diverse real-world examples that are
inspired by artistic approaches, we have motivated you to enable, release
and nurture your creativity, so you can rapidly create mobile applications
based on your own ideas and get ahead of most mobile users and even
market trends.

You are experiencing technology needs today that will probably be
experienced by many other users in the coming years. You know and
understand well your own needs, local habits and traditions and they
are close to the ‘real situation’. This gives a big chance for you to come
up with innovative ideas and develop products that will be appealing to
others too. Put them out, share your innovations and see how happy you
and other developers will be using your applications or developing them
further.

PyS60 is a toolkit at your hand that can help you succeed. Surprise
yourself and others with the applications you build.

Appendix A
Platform Security

A.1 Introduction

There are several releases of the S60 platform and they have some
important differences. The most important division in the S60 platform is
the division between S60 versions older than S60 3rd Edition (also known
as S60 3.0) and versions after S60 3rd Edition.

Before S60 3rd Edition, a program written in native code was free to
access any functionality available on the phone without asking confir-
mation from the user or being certified in any way. All programs were
considered fully trusted. Once a program was running, it had the opportu-
nity to do anything it wanted, including make the phone inoperable, give
the user a large phone bill or spy on the user without their knowledge.

In S60 3rd Edition, the situation has changed with the introduction of
a security framework known as Symbian OS Platform Security that limits
what software running on the phone can do.

Platform Security is a complex topic and we cannot hope to cover
it fully in this appendix. Instead, we will try to gather together in a
unified form the parts that are most relevant to the Python for S60
programmer, with emphasis on independent prototype development
and experimentation. Readers interested in more details are recom-
mended to consult the documentation on the Symbian Signed website,
www.symbiansigned.com and the definitive guide on the topic, [Heath
2006].

The policies followed by device manufacturers and Symbian in matters
such as types of developer certificates granted and the actual security
settings on the devices can vary across manufacturers, countries and
device variants. The information on security settings in this appendix was
correct at the time of writing, but the policies and processes may change.

From the viewpoint of the PyS60 programmer, the following limitations
imposed by Platform Security are the most relevant:

• Accessing potentially sensitive features now requires capabilities.

280 PLATFORM SECURITY

• Certain files and directories are now considered protected and can be
accessed only in a limited way. This is known as data caging.

• Installing new native applications to the device is only possible
through the operating system’s own software installer from a signed
SIS file.

A.2 Capabilities

In a device that uses Platform Security, a program must have permission
to access potentially sensitive features. In Platform Security jargon, these
permissions are called capabilities. A program has to hold a certain
capability to access a certain set of sensitive features. Not all features
require capabilities – there are many things you can do without holding
any capabilities at all. Almost all the examples in this book, except GSM
locationing, do not require special capabilities.

There is a small, fixed set of capabilities and each capability grants
access to a specific set of functionality. The capabilities defined in S60
3rd Edition are listed in Table A.1.

From the viewpoint of a PyS60 programmer, the capabilities can be
roughly divided into three groups, based on the difficulty of accessing
them:

• User-grantable capabilities are capabilities that the user who is
installing a program can grant to the program at install time. A program
that needs only user-grantable capabilities can be self-signed, mean-
ing that it can be signed with a random untrusted key that anyone can
generate.

• Capabilities available with a free developer certificate (devcert) are
capabilities with which you can experiment on a single phone using a
devcert available from the Symbian Signed service for free. However,
packaging a program that needs these capabilities into a SIS file that
would install to any phone can only be done through the Symbian
Signed process.

• Manufacturer-approved capabilities are highly sensitive capabilities
that can only be obtained from the device manufacturer, even if it’s
just for experimenting on your own phone. Getting these capabilities
requires you to justify why you need them, and to have an ACS
Publisher ID from Verisign.

The good news is that most of the things that you’ve learned to do
in PyS60 so far need only user-grantable capabilities and none of them

CAPABILITIES 281

Table A.1 Capability groups

Capability Description

ReadUserData Read access to user’s confidential data such as contacts
and messages

WriteUserData Write access to user’s confidential data such as contacts
and messages

UserEnvironment Access to confidential information about the user’s
environment by way of sensors such as microphone or
camera

NetworkServices Access to communications that may cost money such as
telephone calls or SMS

LocalServices Access to local communications that don’t cost money to
use, such as Bluetooth and infrared

Location Location information, such as GPS coordinates

TrustedUi Creating trusted user interface components

ProtServ Registering server processes with a protected name

SwEvent Generating simulated key events and capturing key events
from any application

PowerMgmt Killing processes or turning off the device

ReadDeviceData Read-only access to sensitive system settings

WriteDeviceData Write access to sensitive system settings such as system
time, time zone and so on

SurroundingsDD Access to device drivers that provide information about the
surroundings of the phone

CommDD Access to communication device drivers (for example,
WLAN driver)

MultimediaDD Access to multimedia device drivers

NetworkControl Read or modify network protocol settings

DiskAdmin Low-level disk administration functions such as formatting
drives or mounting and unmounting partitions

(continued overleaf)

282 PLATFORM SECURITY

Table A.1 (continued)

Capability Description

AllFiles Full access to private directories; read-only access to \sys

DRM Access to unprotected forms of DRM-protected content

TCB Write access to \sys and \resource directories

Table A.2 Applications that need capabilities granted by a devcert

Description Function or module Required capabilities

Global key capture keycapture module SwEvent

Reading the cell ID location.gsm location() ReadUserData,
Location,
ReadDeviceData

Reading the GPS
location

position module Location

Setting the system
time

e32.set home time() WriteDeviceData

need manufacturer-approved capabilities. There are a few cases that need
devcert capabilities and they are listed in Table A.2.

If your program doesn’t need any of these functions, or any third-party
extension that would need extra capabilities, then you can avoid some of
the effort related to code signing.

A.3 File System Protection

Besides the limitations described previously, access to some files is
limited. There are three protected directories on each drive that have
special properties. The protected directories are:

• \sys: Requires AllFiles to read, TCB to write.
The most important part here is the \sys\bin directory since, under
Platform Security, the phone can only execute native code in the
\sys\bin directories. On previous S60 editions it was possible to
store C++ extension modules for PyS60 in any directory, but in S60
3rd Eition they must all be stored in \sys\bin.

• \resource: Requires TCB to write and no capabilities to read.

SIS PACKAGE SIGNING 283

This directory is used for storing shared, non-sensitive data that must
be accessible to several programs. Python for S60 comes with a set of
standard library modules written in Python and they are stored here.

• \private: Reading and writing to a program’s own directory needs
no capabilities. Reading other programs’ directories requires AllFiles
and writing to them requires TCB.

All other parts of the file system (for example, \data\images) can be
freely read and written by all code. regardless of capabilities.

If you need to store program-specific data that must be easily accessible
and writable by anyone, storing it in a program-specific subdirectory
under \data is a good choice. The Nokia PC Suite file manager is able
to access the entire contents of the memory card, but only the C:\data
directory on the C: drive. The ability to use the file manager can be
convenient especially during program development.

If you need to keep some or all of the data in your program private, you
should store it in the directory c:\private\<UID>, where <\UID> is
the UID code obtained from the function appuifw.app.uid(). Since
only your program and programs that have the AllFiles capability are
able to access this directory and AllFiles capability is granted to only
very few specialized programs, your data is relatively safe if stored in
\private.

A.4 SIS Package Signing

The only way to install native code to a normal device that uses Platform
Security is through the Symbian OS software installer, from a signed SIS
package. Before Platform Security, signing was optional but from Symbian
OS 9.1 and the 3rd Edition of the S60 platform, it is mandatory if your
program requires capabilities.

There are many different ways to obtain a signature for a SIS file and
the way to use it depends mainly on the following factors:

• How and to whom you intend to distribute the SIS file? Is the number
of target devices 1, 10, 100 or 100 000? How technically skillful are
the intended users?

• What capabilities are needed for the code in that SIS file?

• Is the code intended for temporary or permanent use?

For a PyS60 programmer, the most interesting ways to obtain a sig-
nature are self-signing, signing with a devcert and going through the
Symbian Signed process.

284 PLATFORM SECURITY

For the two former methods, you sign the SIS package yourself using a
key and a certificate. In self-signing, you generate the key and certificate
yourself and in signing with a devcert you obtain the certificate and key
files by request from a network service hosted by Symbian.

The Symbian Signed process is different, in that the signing is not done
by you. Instead, you submit your program for testing to a testing house,
which sends you back a signed SIS package, provided your program
passes the tests. See www.symbiansigned.com for more information.

A.4.1 Creating a Key and a Self-Signed Certificate

The tools for signing and creating keys and certificates are included in the
S60 3rd Edition C++ SDK. Once you have installed the SDK, creating a
self-signed certificate and the corresponding key takes just one command:

makekeys -cert -dname "CN=John Doe EM=john@doe.com" mykey.key mycert.cer

The – dname parameter can be used to identify the owner of the given
key. Replace John Doe with your name and john@doe.com with your
email address. There are also several other fields that you can add,
such as:

• CO – two-letter country code of the country where you live, for
example ‘‘GB’’

• OR – organization you are a part of, for example ‘‘Acme Ltd.’’

A.4.2 Getting a Developer Certificate

A developer certificate, devcert for short, is a key–certificate pair that can
be used to sign SIS packages with higher capabilities than is available
through self-signing, but with two important restrictions:

• The devcert expires at a specific time and after that SIS packages
signed using the devcert can’t be installed without tampering with the
phone’s clock.

• Packages signed with a devcert can only be installed into a specific,
limited set of phones identified by their IMEIs. The number of devices
that can be attached to a devcert depends on the type of devcert.

There are many different kinds of developer certificates that grant
different levels of capabilities, enable installation to different numbers of
devices and take different amounts of effort to obtain.

The capabilities granted by different devcerts and the specific proce-
dures needed to obtain them are a matter of policy that may change in the

SIS PACKAGE SIGNING 285

future. The reader is encouraged to check the Symbian Signed website
for information regarding changes.

For the beginning Python for S60 programmer, the most interesting and
practical type of developer certificate is available from a public Symbian
network service. At the time of writing, this developer certificate can be
used to install software onto one phone, with the user-grantable and free
devcert capabilities.

Higher-grade devcerts are available and they may be used to get access
to sensitive manufacturer-approved capabilities or to sign a SIS package
for installation to more than just one device. The specifics of obtaining
higher-grade devcerts is beyond the scope of this introductory appendix
and the interested reader is encouraged to study the documentation
available at the Symbian Signed website.

You can get a free devcert as follows:

1. Register into the Symbian Signed web service at www.
symbiansigned.com.

2. Download, install and run the Developer Certificate Request Tool.

3. Enter the IMEI of your phone and the capabilities you want. Typically
you would want to select all the capabilities available with a free
devcert.

4. The tool generates a private key and a certificate request file. Upload
this into the Symbian Signed web service.

5. Download the finished developer certificate from the Symbian
Signed service.

6. Proceed with signing and installation as described below.

Note: a devcert is only valid for a limited time. Remember to renew it
before it expires! Also, make sure the clock on your phone is set correctly
or the devcert will not work.

A.4.3 Signing the Python for S60 Interpreter with a devcert

In case you’d like to use free devcert capabilities with your Python inter-
preter software, all you need to do is to sign the Python ScriptShell file (e.g.
PythonScriptShell 1 4 0 3rdEd unsigned freedevcert.
SIS) with your devcert. The PythonForS60 file (e.g. PythonForS60 1
4 0 3rdEd.sis), which is the other installation file for your Python for
S60 interpreter software, is already fully signed and doesn’t require any
action by you.

If you only want to use user-grantable capabilities there is no need to
sign the installation file. You can use them as you downloaded them from
the Sourceforge website.

286 PLATFORM SECURITY

A.4.4 Creating a Standalone Python Program

The Python for S60 SDK comes with a tool called py2sis that can be
used to create SIS packages from PyS60 programs.

To use py2sis, you need:

• S60 C++ SDK, 3rd Edition, Maintenance Release

• Python for S60 SDK plugin

• Python 2.4 or greater

The tool is installed in the directory \epoc32\tools\py2sis. To
turn a simple ‘hello world’ program into a SIS package perform the
following steps:

1. Pick a UID for your program. A UID is a 32-bit number that identifies
a given Symbian program and all programs installed in a device must
have a unique UID. For use during development and testing you
may pick a UID randomly from the range 0xe0000000–0xefffffff.
If you intend to distribute your program, you should obtain a UID
from the Symbian Signed website.

2. Invoke py2sis with a command such as the following (the UID is
just for example – invent your own, don’t use this one):

python \epoc32\tools\py2sis\py2sis.py hello.py hello.sis -sdk30
-appname=HelloApp -uid=0xe0123456

3. A package called hello.sis is generated.

4. The package generated by py2sis is unsigned and must be signed
before it can be installed. Signing the package with your key and
certificate is accomplished by the following command:

signsis hello.sis hello-signed.sis mycert.cer mykey.key

where mycert.cer and mykey.key are the key and certificate to be
used (either self-signed or devcert). Note that the key and certificate are
given to the makekeys and signsis commands in the opposite order!

You are done! hello-signed.sis is now ready for installation.

A.5 Running Python for S60 Code under Platform Security

There are many different ways to run your PyS60 code in a device that
uses Platform Security and you will typically use several different ways

RUNNING PYTHON FOR S60 CODE UNDER PLATFORM SECURITY 287

during the lifetime of your program. The procedures needed are different
for development time and deployment time: they depend on the set of
capabilities needed and the type of the intended final audience.

A.5.1 Development

When developing your program, the typical procedure is to install the
appropriate version of the PyS60 runtime package and the PyS60 inter-
preter to your device and test your program using that. The version of the
PyS60 runtime needed depends on the capabilities you need:

• If your program requires only user-grantable capabilities, then this
part is easy: you can just install and use the default version of the
PyS60 runtime and script shell.

• If you need any devcert capabilities, then you will need to obtain
a developer certificate for each device with which you want to test
your code. Download the script shell package marked as ‘unsigned-
freedevcert’, sign it with your devcert and install it.

• If you need manufacturer-approved capabilities, then you will need
to obtain a manufacturer-approved devcert and recompile the PyS60
script shell (interpreter) to have these capabilities. The Python for S60
development team can provide advice in these cases.

A.5.2 Deployment

You can distribute your PyS60 programs in two main forms: as plain
Python scripts or packaged into SIS packages signed in different ways. Both
have their own advantages and disadvantages. The choice of deployment
method depends on the capabilities you need and the type and size of
your audience.

• Distributing as a plain script is simple for the developer and makes
it easy for users to edit the scripts without extra tools. However, the
users must run the program through the script shell, there is no way
for the program to have its own icon in the application menu. Also,
the capabilities available depend on the capabilities of the script shell;
if the program requires more than user-grantable capabilities, people
who wish to test it must obtain their own devcert. This method is
suitable for only for development.

• Distributing as a self-signed SIS package is easy for the users to install
and use – the program can have an application icon in the application
menu. However, only user-grantable capabilities are available and
warnings are displayed at installation time. This method also requires
the developer to install additional tools. Some rare phone variants

288 PLATFORM SECURITY

do not allow the installation of self-signed packages. This method is
convenient for both testing and deployment and can be used as long
as the program doesn’t require capabilities that aren’t user-grantable.

• Distributing as an unsigned SIS package that testers sign with their
own devcert allows the program to use user-grantable and free devcert
capabilities and have an icon in the application menu. However, the
users must obtain their own devcert and use the SDK signing tools to
install the program. This method is suitable for testing with advanced
users, but not for actual deployment.

• Distributing as a Symbian Signed SIS package means that all required
capabilities are available and the program will install on any device.
Some websites only accept Symbian Signed software for distribution.
However, testing takes time and money (unless using the freeware
signing process, which takes only time). This method is suitable for
deployment of a finished program to the mass market.

Appendix B
Bluetooth Console

Bluetooth console makes it possible to use the PyS60 interactively from
your PC. Instead of the typical cycle of ‘edit, upload, test’, you can
evaluate lines of code in real-time on the phone.

This approach is particularly useful for experimenting with the standard
modules. You can try out different functions and parameter combinations
without having to edit or upload any files. Since the lines are executed
on the actual device, you gain a realistic understanding of how long
various functions take to execute and how different UI elements look on
the screen.

It is also a rapid way to debug custom modules by you and other
third-party developers. You can upload a new module to the phone,
import it into the Bluetooth console and start testing its functions one
by one. If exceptions occur, they are much easier to parse on the large
display of your PC than on the phone.

If you are interested in some hard-core hacking, note that you can
automate testing by the Bluetooth console since, after all, the console is
just receiving lines of text from the PC. Instead of you typing the lines, they
could be generated by, say, a Python script running on your computer.
This might open up new possibilities for rapid prototyping and automated
testing.

If interacting with the PyS60 shell programmatically from your PC
sounds useful to you, have a look at the following files that are included in
the PyS60 source distribution: extras/examples/simplebtconsole
.py and core/Lib/btconsole.py. The former is a simplified imple-
mentation of the Bluetooth console and the latter the actual implementa-
tion of it. The PyS60 source distribution can be found at http://sourceforge.
net/projects/pys60/.

B.1 Setting up Serial Communication

To use the Bluetooth console, or communicate with the PC over Bluetooth
from your own PyS60 applications, an RFCOMM serial port must be set

290 BLUETOOTH CONSOLE

up on the PC side. On Mac OS X and Linux, the serial port is just a special
file under the /dev directory. On Windows, a COM port is reserved for
this purpose. In the following sections, we explain how to set up these
interfaces.

First, set up the RFCOMM port as instructed in one of the sections
B.1.1 to B.1.3. After you are finished with the setup, you can see if the
serial port is visible to your phone as follows:

1. Copy Example 55 from Chapter 7 to your phone in the usual manner.

2. Run the script. You should see the name of your computer on the list
of Bluetooth devices nearby. If you cannot see it, your PC cannot be
discovered. Check any settings on your PC’s Bluetooth configuration
that might affect how other devices see your computer. Check also
that Bluetooth is actually switched on.

3. Choose your computer from the list. The script should print out a list
of services found on the PC. The list should include an entry such
as ‘Serial Port’ (or ‘PyBook’, on OS X). If you can see a service like
that on the list, the serial port is set up correctly. If not, the service is
either not visible to this phone or it is not advertised correctly by the
PC and you should re-check the settings.

B.1.1 Windows
The following steps should work for at least Windows 2000, 2003 and
XP. Because of differences in Bluetooth drivers, in some cases the process
may not be this straightforward and might require some further tweaking.
In any case, the manual for either your computer or your Bluetooth
dongle should explain how to set up the serial port for Bluetooth.

1. Open the Control Panel. Open Bluetooth Configuration.

2. Select the Accessibility tab and select the ‘Let Other Bluetooth
Devices Discover this Computer’ option.

3. For the panel that specifies ‘Devices allowed to connect to this
computer’, you can choose ‘All devices’ for testing. Note that this
is insecure if you leave it on. Alternatively, you may select ‘Add
Device’ and add your phone to the list.

4. Select the Local Services tab and select ‘Add Serial Device’. Choose
any available COM port and keep its number in mind. You will need
it later.

B.1.2 Mac OS X
The following steps create a special file that can be used to communicate
with the phone:

SETTING UP SERIAL COMMUNICATION 291

1. Open System Preferences dialog. Select Bluetooth.

2. Select the Settings tab and enable the ‘Discoverable’ box.

3. Select the Devices tab and, unless you have done this before, pair
your Mac with your phone using the ‘Set up new device’ button.
Select the Sharing tab, select Add Serial Port Service and name it
‘PyBook’ and for type, choose RS-232.

After you have gone through the above steps, you should see a dialog
like the one in Figure B.1, which includes the new ‘PyBook’ item. As a
result, a file at /dev/tty.pybook has been created that provides an
RFCOMM interface.

Figure B.1 RFCOMM setup on Mac OS X

B.1.3 Linux

Some Linux distributions may provide a graphical control panel that lets
you configure the RFCOMM port, similarly to Mac OS X. However, here
we perform the configuration on the command line, as this works on
any distribution that has the Bluetooth tools (package bluez-utils in
many distributions) installed.

Note that you should establish a Bluetooth pairing between your
computer and the phone – see Section 7.1 for instructions. When you

292 BLUETOOTH CONSOLE

have paired the devices successfully, you can execute the following
commands as the root user:

• hciconfig hci0 piscan – sets the device discoverable

• sdptool add–channel=3 SP – advertises the available serial port on
channel 3.

• rfcomm listen/dev/rfcomm0 3 – listens for incoming connections on
channel 3. Note that this command does not return until you connect
to the PC and close the connection on the phone side.

You should open another terminal in which you can run a server
application of your own or the Bluetooth console. In this case, the active
serial port can be found in the file /dev/rfcomm0.

B.2 Using Bluetooth Console

In this section, we assume that the RFCOMM serial port is set up
correctly. You should also see the serial port service from the phone using
Example 55, as described above. After this is done, there are only few
reasons for the Bluetooth console not to work.

Bluetooth console is used in a terminal emulator application. Windows
comes with one called HyperTerminal and several others are available
for free. Linux and Mac OS X users have plenty of choices as well, but a
program called screen is most often installed by default.

You can type any Python expression on the Bluetooth console. When
the console seems to be active, you can try to type the following two
lines on your PC and see what happens on the phone:

import appuifw
appuifw.note(u"Woohoo!", "info")

B.2.1 Windows

HyperTerminal can be found at Programs, Accessories, Communications,
HyperTerminal. HyperTerminal is used as follows:

1. Open the program. First, it asks for a connection name, you can
use for example ‘btconsole’. Press OK and select the correct COM
port. The port is the one you set up in the Local Services tab in the
Bluetooth configuration panel. Select the fastest connection speed.

2. On your phone, open PyS60 interpreter and on the options menu,
choose ‘Bluetooth console’.

USING BLUETOOTH CONSOLE 293

3. Your computer’s name should show up in the list – choose it.

4. If the script executing on the phone prints ‘OK’, the console should
be up and running. Hit enter on HyperTerminal to see the command
prompt of the PyS60 interpreter.

If the above did not work, note that in some cases Nokia PC Suite may
conflict with other users of the serial port. If you have PC Suite active,
you might want to disable it for testing.

B.2.2 Mac OS X

After successful Bluetooth configuration, a serial port file should exist
at /dev/tty.pybook. You can execute the following command on
a terminal:

screen /dev/tty.pybook

Note that nothing is visible on screen until the console is running.
Now you can run the Bluetooth console on your phone, as described in
Windows steps 2 and 3. You should hit enter on the screen when the
console is active on the phone side.

When you are finished with the console session, you can terminate
the connection with Ctrl-D.

B.2.3 Linux

You should have an rfcomm process running on one terminal, saying
‘Waiting for connection on channel 3’. Now you should open another
terminal for the Bluetooth console and login as root to make sure that
you can read and write/dev/rfcomm0. Then follow these steps:

1. Open the Bluetooth console on your phone, as described in Windows
steps 2 and 3. If the connection was established successfully, rfcomm
prints out a line such as ‘Connection from 00:12:D2:DA:14:F4
to/dev/rfcomm0’.

2. Execute screen/dev/rfcomm0 on the other terminal.

3. Hit enter to see the PyS60 command prompt on screen.

When you are finished with the console session, you can terminate
the connection with Ctrl-D.

Appendix C
Debugging

Sometimes your Python program does not behave as you would expect.
This happens in virtually every project at some point during the develop-
ment process. It is a good idea to track down the cause as soon as you
notice that something goes awry. This ensures that you always know that
your program behaves as intended and it is built on a solid basis.

This appendix goes through the most typical ways of debugging a
Python program. Since bugs are seldom really mysterious in Python, in
contrast to many low-level languages such as C++, you can survive with-
out heavy-duty debugging tools. Often a few well-placed print statements
are enough to detect where the execution goes off track.

The ease of debugging in Python is based on rapid debug–evaluate
iterations. Instead of assuming or trusting the documentation on how a
PyS60 API function or a Python language construct behaves, you can try
it in practice. Thus, the first step in successful debugging is to make sure
that you can update your code on your phone with a minimal number of
steps, as described in Chapter 2 and Section 10.3.

Be prepared to make lots of small changes to your code quickly. If
modifying the code is a frustrating and time-consuming activity for you,
check if you can streamline your development process. You should be
able to update the program on your phone with two or three clicks from
your PC.

Once you are fluent in updating the code, you should become accus-
tomed to developing your code in short update–test cycles. If you make
only a few small changes at a time and test and fix them immediately, you
can be sure that your program works correctly as a whole. If it does not,
at least you have a better understanding of how your program behaves
and you can start applying methods from the debugging arsenal.

C.1 Interpreting Tracebacks

If execution of a Python program leads to an expression that is not
understood by the interpreter, an exception is generated. Chapter 6

296 DEBUGGING

describes exceptions in detail. If the exception is not handled by your
program, it is eventually shown on the Python console and the program
execution is terminated.

Seeing an exception is useful in two respects: it tells you what and
where something exceptional happened. Look at Example 127.

Example 127: See the error?

def hello():
appuifw.query(u"Hello World", "txet")

hello()

You can probably spot the error. When the code is executed, the
following output is printed on the console:

Traceback (most recent call last):
?
File "C:\python\ex_error.py", line 4, in ?
File "C:\python\ex_error.py", line 2, in hello

def hello():
ValueError: unknown query type

We omitted some of the output between the first line and the last
four lines. This output is called a traceback. It tells how the program
execution proceeded just before the exception happened. The most
recently executed lines are shown last. Almost always the last few lines
pinpoint the actual location of the problem, but often it is useful to
know how the program ended up on those lines, as shown by the full
traceback. If you execute the program in the Python shell, the first lines of
the traceback show how the program was started by the shell internally
which is not really interesting to us.

In the example above, you can see that the exception occurred in
line 2, in function hello(). The erroneous function was called by line
4 which does not belong to any function, thus it says ‘in ?’. The files
mentioned above these (which are not shown above) are not written by
us, in contrast to ex error.py, so we are not interested in them. When
debugging programs of your own, you can follow the same principle:
in the traceback, look for the lines which contain filenames familiar to
you, starting from the bottom. This helps you to understand the context
in which the exception occurred.

The last line of the traceback shows the actual exception, namely
ValueError in the example above. The name of the exception may
suggest the nature of the problem, but usually it is the error message
which reveals the actual cause. Based on the traceback, we know
that the error occurred on line 2, which contains a call to the func-
tion appuifw.query() which in turn generated the error message

C.1 INTERPRETING TRACEBACKS 297

‘unknown query type’. Summing up this information, we notice that a
typing error, "txet" instead of "text", in the second parameter for the
function call is the culprit.

Sometimes exceptions may be a bit misleading. Try out the code in
Example 128.

Example 128: Syntax error

def hello():
appuifw.query(u"Hello World", "text"

hello()

Once you run the code, you will get a traceback like this:

Traceback (most recent call last):
?
File "C:\python\ex_error.py", line 4

hello()
SyntaxError: Invalid syntax

This suggests that the culprit is on line 4, but the function call
hello() seems to be correct. In this case, the name of the exception,
SyntaxError, reveals the actual cause.

The problem does not occur during execution of the program, but
when PyS60 tries to read and interpret the code, which reveals any errors
in the code text, that is, syntax errors. Since the exception is reported
on line 4, which seems to be correct, we start to find the real culprit on
the lines which were read before that. The true cause is a missing right
parenthesis on line 2 which made the interpreter think that the function
call continues all the way to line 4. The lesson here is that if you cannot
spot the error on the reported line, start looking at previously interpreted
or executed lines.

The most frustrating bugs are usually those which do not cause any
exception but make the program behave in an unexpected manner.
Typically, this happens when your program gets erroneous input which
seems normal to the function but which makes it behave in a wrong way.
To get rid of bugs like this, you need some other methods which are
introduced in Section C.2.

In some cases, bugs may be hiding in innocent assumptions which just
happen to be correct when you first run the program. For example, in the
examples above a major bug is lurking. Both the examples are missing
the import appuifw statement in the beginning of the script, which is
needed to call appuifw.query(). The examples just happen to work
since the Python shell imports the appuifw module internally. If you
run the examples above as stand-alone programs, they would fail without
any meaningful error message.

298 DEBUGGING

C.2 Debugging Procedure

How should you proceed when a program does not work as expected?
After you notice that something is wrong, you have at least some informa-
tion, namely, at which point the program does not work as expected. You
should restart the program and repeat the steps that led to the problem
to make sure that you have correctly recognized the context in which
the bug occurs. You can repeat this many times if you like, maybe with
slightly varying input to collect more information on the nature of the
problem.

You should be able to locate the function which does not work
correctly. Add some print statements in the code and try to find out
what the erroneous values look like. Sometimes, examining the values is
enough to reveal the actual cause. If you are debugging an application
with a user interface, it might be easier to show the values in a pop-up
dialog instead of using print statements and the console.

Once you have spotted the erroneous values, you should start back-
tracking to find out how they are produced in the first place. Usually, you
do this by adding print statements along the program’s path of execution,
that is you add them to functions which were called before the function
that manifests the problem.

Print out all intermediate values to check whether they match your
assumptions as to what they should be. Once you have found the function
which gets correct input but produces incorrect output, you are closer
to identifying the actual cause of the problem. After you have found
the cause, fixing it is often straightforward. Before you remove all print
statements used for debugging, it makes sense to test the new function
and ensure that it produces correct values. This makes the debugging of
other errors easier.

If the incorrect function seems to be a PyS60 API call, that is, a function
which is used to access the device’s features, you should proceed as
follows. First, double-check the documentation to make sure that you
have understood the input and output of the API call correctly. Even
though PyS60 documentation is typically written in a clear, technical,
unambiguous way, sometimes the descriptions leave room for different
interpretations. Try to find some example code using the particular API
call in question, for instance from the web.

If you are sure that the function should work as you expect, make as
minimal a test script as possible, which you can use to test the function
in isolation. If you cannot get the function to work even in isolation, the
problem is not likely to be in your program. Either the API function has
bugs (not totally unlikely) or it is meant to be used in a different manner.
In either case, you might ask for help in the Python for S60 mailing list,
IRC channel, Forum Nokia discussion board or the PyS60 wiki.

DEBUGGING PROCEDURE 299

If you feel adventurous, you could take a look at the Python source
code and find out how the API call is implemented. This is not as
intimidating as it may first sound, since the code is typically written in a
clean and understandable style. Even if you do not understand it fully, it
can point you in the right direction. Luckily Python is open source so this
is a real option!

If the problem is not related to a device feature but to a Python language
construct or to a function in its standard library, you can experiment with
similar code on your PC. It is practical to have the standard Python
interpreter, which is available at www.python.org, installed on your
PC – note that PyS60 is based on Python 2.2 and not the newest version,
which is 2.5 as of July 2007. You can have a Python shell running on
your PC on which you can try out different expressions and functions on
the fly. This is often faster than sending the code to your phone to try out
different expressions.

Appendix D
How to Use the Emulator

You download the PyS60 Interpreter installation files from http://source
forge.net/projects/pys60. You must download the correct version (for
2nd or 3rd Edition of S60). If you are not sure which one you need, check
Table D.1 to find your phone model. You will also find a device overview
at http://forum.nokia.com.

Here are the steps to take to use the emulator:

1. Download and install the correct S60 Developer Platform Software
Development Kit (SDK) which includes the emulator. The SDK can
be found at Forum Nokia (http://forum.nokia.com).

2. Download and install the Python plug-in that comes as part of the
appropriate SDK file, which can be found on the SourceForge PyS60
project website (http://sourceforge.net/projects/pys60).

3. Load your script into the emulator by copying your .py file to the
appropriate folder (see the Python plug-in documentation).

4. Open the emulator and start the Python application using the icon
on the emulator’s desktop window or a subfolder of it.

5. Select Options, Run script. Choose your script from the list that
appears and press OK. Your script should now start up.

302 HOW TO USE THE EMULATOR

Table D.1 PyS60 installation files

S60 Edition PyS60 Install files

3rd Edition

Nokia 3250, Nokia 5500
Nokia 5700, Nokia 6110
Nokia 6120, Nokia 6121
Nokia 6290, Nokia N71
Nokia N73, Nokia N75
Nokia N76, Nokia N77
Nokia N80, Nokia N91
Nokia N92, Nokia N93
Nokia N93i, Nokia N95
Nokia E61, Nokia E61i
Nokia E65, Nokia E50
Nokia E60, Nokia E62
Nokia E70, Nokia E90

PythonForS60 1 4 0 3rdEd.SIS
PythonScriptShell 1 4 0 3rdEd
selfsigned.SIS

2nd Edition

Nokia 3230, Nokia 6600
Nokia 6260, Nokia 6620
Nokia 6670, Nokia 7610

PythonForS60 1 4 0 2ndEd.SIS
PythonScriptShell 1 4 0
2ndEd.SIS

2nd Edition Feature Pack 2

Nokia 6630, Nokia 6680
Nokia 6681, Nokia 6682

PythonForS60 1 4 0 2ndEdFP2.SIS
PythonScriptShell 1 4 0
2ndEdFP3.SIS

2nd Edition Feature Pack 3

Nokia N70, Nokia N72
Nokia N90

PythonForS60 1 4 0 2ndEdFP3.SIS
PythonScriptShell 1 4 0
2ndEdFP3.SIS

References

Below, we have highlighted the most important sources of information in
boldface.

Book References

Heath, C. (2006) Symbian OS Platform Security: Software Development
Using the Symbian OS Security Architecture. Chichester: John Wiley
& Sons

Lutz, M. (2001) Python Pocket Reference. O’Reilly
Lutz, M. and Ascher, D. (2003) Learning Python. O’Reilly
Scheible, J. and Ojala, T. (2005) ‘MobiLenin – Combining a multi-track

music video, personal mobile phones and a public display into multi-
user interactive entertainment.’ at www.leninsgodson.com/mobilenin

Von Hippel, E. (2005) Democratizing Innovation. MIT Press

Other Book-Related Information

Website for this book: www.mobilepythonbook.com
MobiLenin Python for S60 tutorials: www.mobilenin.com/pys60/menu.

htm
MobileArtBlog: www.mobileartblog.com
Official Python for S60 page: http://opensource.nokia.com/projects/

pythonfors60
Python for S60 wiki: http://wiki.opensource.nokia.com/projects/

Python for S60
This is the best source for PyS60 material.

304 REFERENCES

Forum Nokia Wiki: http://wiki.forum.nokia.com/index.php/Category:
Python

Python for S60 API documentation: http://sourceforge.net/projects/
pys60
The PyS60 documentation can be downloaded in PDF format.

Python for S60 IRC channel: #pys60 at freenode.net
Python for S60 discussion forum: http://discussion.forum.nokia.com/

forum/forumdisplay.php?forumid=102

Python Tutorials and Documentation

Peters, T. (2004) ‘Zen of Python’ at www.python.org/dev/peps/pep-0020
Pilgrim, M. (2004) Dive into Python. Apress at www.diveintopython.org

A free web book for experienced programmers
Scheible, J. (2007) ’Python for S60 tutorial’ at www.mobilenin.com/

pys60/menu.htm
van Rossum, G. (2001) ‘Python Style Guide’ at www.python.org/dev/

peps/pep-0008
A comprehensive Python language lesson: http://docs.python.org/tut
Official Python Library Reference: http://docs.python.org/lib

This reference contains information about all standard modules that are
not described in the PyS60 documentation. Note that only functions
that are available for versions of Python before version 2.3 are available
in PyS60 now.

Python Imaging Library (PIL): www.pythonware.com/products/pil
Twisted: http://twistedmatrix.com

A Python framework for building custom server software
Jabber: www.jabber.org and www.xmpp.org/rfcs for protocol documen-

tation
Beautiful Soup: www.crummy.com/software/BeautifulSoup

A Python HTML/XML parser

Glossary

Application A program including a user interface that allows
rich interaction with the user

Carrier A mobile network operator

Cell phone A mobile phone

Console User interface of the Python for S60 script
shell – either on the phone or on the PC over
Bluetooth

Event An external event, such as the user pressing a key
or an SMS message arriving, that causes the
program to react, typically by way of a callback
function

Interpreter A computer program that executes Python code;
you have to install the Python for S60 interpreter
on a phone to run Python programs

Library Equivalent to a module or a collection of modules

MMS Multimedia message service; an extension to SMS
that allows sending of images and sounds or other
rich types of data

Mobile network
operator

A company that provides services for mobile
phone subscribers

Mobile phone A personal handheld communication device;
modern mobile phones, especially smartphones,
provide many functionalities, such as web
browser, email, camera and music player, in
addition to normal telephone functions

306 GLOSSARY

Module A file that contains a collection of related
functions and data grouped together; a program
may import a module (unlike an object) only once
and cannot handle several instances of the same
module

Object A basic building block of programs that contains
both data (variables) and functions that are used to
modify the data; practically everything in Python
is an object, including strings, lists and functions

Program A generic term for executable Python for S60
code; scripts and applications are types of
program; modules are not programs, since they
cannot be executed as such

PyS60 Abbreviation for Python for S60

Python A high-level programming language which
emphasizes the importance of programmer effort
over computer effort and prioritizes readability
over speed or expressiveness; comes with a large
library of extension modules; Python programs are
executed by the Python interpreter

Python for S60 The Python programming language on the S60
smartphone platform; includes the core Python
language, many of Python’s standard modules and
a wide range of additional modules for accessing
the phone’s features, such as camera and
networking

S60 A software platform for mobile phones based on
the Symbian operating system; handles many
high-level tasks, such as building user interfaces,
on top of Symbian OS; all current high-end Nokia
mobile phone models are based on the S60
platform.

Script A small program that is typically used to automate
a single task; performs little or no interaction with
the user

Smartphone A mobile phone that uses the S60 platform; more
generally, a smartphone is a mobile phone with
PC-like functionality

SMS Short message service, often called text
messaging; a way to send 160 characters of text
from one mobile phone to another

GLOSSARY 307

Symbian OS An operating system designed by Symbian for
mobile devices; all current Nokia high-end
mobile phone models are based on Symbian OS

Thread A way to execute several tasks at the same time in
a program; for example, one thread may listen to
network events while another handles the user
interaction

UI User interface, made up of graphical elements,
such as buttons, dialogs, menus and so on, that
allow the user to affect program behavior

Unicode An industry standard allowing computers to
consistently represent and manipulate text
expressed in any of the world’s writing systems; in
Python, Unicode strings are prefixed with the
letter u, for example, u'käärmekännykkä'; in
Python for S60, interfaces to the phone’s features
expect Unicode strings instead of normal strings

Examples

1 First PyS60 program

2 Various dialogs

3 Various notes

4 Multi-query dialog

5 Popup menu

6 Selection list

7 Multi-selection list

8 Shopping list assistant

9 Two dialogs

10 First function

11 First application

12 Application menu

13 SMS voter

14 SMS inbox

15 Inbox search

16 Inbox sorter

17 SMS receiver

18 Filtering SMS gateway

19 Hangman server (1/3)

310 EXAMPLES

20 Hangman server (2/3)

21 Hangman server (3/3)

22 Text to speech

23 MP3 player

24 Blocking MP3 player

25 MIDI player

26 Sound recorder

27 Animal sounds

28 Binding a keycode to a callback function

29 Key events

30 Key pressed or held down

31 Graphics primitives

32 Screenshot

33 Moving graphics

34 Viewfinder

35 Minimalist camera

36 Taking photos with a viewfinder

37 UFO Zapper (1/3)

38 UFO Zapper (2/3)

39 UFO Zapper (3/3)

40 Creating a directory for application data

41 Basic file operations

42 Read a sound

43 Read an image

44 Read a video

45 Read and write text

46 Writing a dictionary to a file

47 Read a dictionary from a file

48 Local database

49 Retrieve the current GSM cell ID

50 GSM location application

EXAMPLES 311

51 Vocabulector (1/3)

52 Vocabulector (2/3)

53 Vocabulector (3/3)

54 OBEX discovery

55 RFCOMM discovery

56 Send photos to another phone via Bluetooth

57 Bluetooth chat (1/2)

58 Bluetooth chat (2/2)

59 Bluetooth client

60 PySerial script running on PC

61 AppleScript interface running on Mac

62 GPS reader

63 Telephone

64 Contacts

65 Sysinfo

66 Web downloader

67 Web file viewer

68 Photo uploader

69 Test server

70 TCP client

71 Yahoo! Web service test

72 Set the default access point

73 JSON photo client

74 JSON photo server

75 HTTP server (1/2)

76 HTTP server (2/2)

77 Phone’s IP address

78 Voting server

79 Voting client

80 Generic JSON gateway (1/2)

81 Generic JSON gateway (2/2)

312 EXAMPLES

82 Instant messenger (1/3)

83 Instant messenger (2/3)

84 Instant messenger (3/3)

85 Phone–web proxy

86 Phone–web server

87 MopyMaps! (1/3)

88 MopyMaps! (2/3)

89 MopyMaps! (3/3)

90 EventFu (1/5)

91 EventFu (2/5)

92 EventFu (3/5)

93 EventFu (4/5)

94 EventFu (5/5)

95 InstaFlickr (1/6)

96 InstaFlickr (2/6)

97 InstaFlickr (3/6)

98 InstaFlickr (4/6)

99 InstaFlickr (5/6)

100 InstaFlickr (6/6)

101 List comprehension

102 SMS search using list comprehensions

103 Input sanitization using list comprehensions

104 Dictionary constructor

105 Symbol table

106 Introspective web service

107 Importing a custom module

108 Updating PyS60 code from the web

109 Plugin mechanism

110 MobiLenin (1/2)

111 MobiLenin (2/2)

112 MobiLenin server-side PHP script

EXAMPLES 313

113 Manhattan Story Mashup custom list element

114 MobileArtBlog (1/3)

115 MobileArtBlog (2/3)

116 MobileArtBlog (3/3)

117 Server-side PHP script

118 PHP script for MySQL database insert

119 LED on/off

120 Arduino code LED on/off

121 Max/MSP using Bluetooth (1/2)

122 Max/MSP using Bluetooth (2/2)

123 Max/MSP using TCP/IP

124 OSC for mobile phones

125 Roombatics (1/2)

126 Roombatics (2/2)

127 See the error?

128 Syntax error

Python Language Lessons

These lessons teach basics of the Python programming language in a
nutshell.

Python Feature Section

Callback function 4.2

Catching exceptions 6.1

Dictionary 6.2

For loop 3.2

Function 4.1

If statement 3.2

List 3.2

Local and global variables 4.5

Module 3.1

Object 4.2

Print statement 3.2

Tuple 4.2

Variable 3.2

While loop and break 3.2

Python for S60 Modules

The following modules are used in this book. Custom modules and
modules used on the PC side are not included in this list. More information
about these modules can be found in the PyS60 API documentation and
in the Python Library Reference.

Module Name Description

appuifw S60 user interface application framework;
includes dialogs, notes, selection lists

audio Recording and playing of audio files and
text-to-speech engine

calendar Calendar services: reading, creating entries,
setting alarms

camera Taking of photographs and starting and closing of
the viewfinder

contacts Address book services: finding and adding contact
information

e32 Utilities related to Symbian OS that are not related
to the user interface

e32db Phone’s internal relational database with a
restricted SQL syntax

318 PYTHON FOR S60 MODULES

Module Name Description

e32dbm Phone’s internal database with simple
dictionary-like syntax

glcanvas User interface control for displaying OpenGL 3D
graphics

gles Python bindings to OpenGL ES 3D graphics

graphics 2D graphics primitives and image loading, saving,
resizing and transformation

httplib Low-level access to HTTP and web

inbox Reading of incoming SMS messages and deletion
of SMS messages

key codes Identifiers for keyboard keys

keycapture Global capturing of key events

location GSM Cell ID location

md5 MD5 cryptographic hash function

messaging Messaging services for sending SMS and MMS

os Functions related to handling files and directories

os.path Functions related to file names

position Phone’s internal GPS

random Random number generator

socket TCP/IP networking, Bluetooth, setting the default
access point

sysinfo System information of an S60 mobile device such
as battery level, IMEI, signal strength or memory
space

telephone Telephone functionalities such as dial and
hang-up

PYTHON FOR S60 MODULES 319

Module Name Description

thread Threads to handle concurrent processing of
several tasks

time Time and date functions

topwindow Creating windows that are shown on top of other
applications

urllib High-level access to HTTP and web

Index

+= operator 47
2D graphics 92–5
3D graphics 99–100
access point

selection dialog 169
setting default 172

address() function 68, 75
animal sounds, recording 82–3
APIs (Application Programming

Interfaces) 199–201
append() function 39
AppleScript, controlling

applications with 146–8
application body 59
application building

application structure 52–6
application body 59, 60
application menu 56–9
content handler 60
tabs 59

functions 49–52
SMS game server 70–6

application keys, Web API 199,
207, 217

application menu 56, 58–9
appuifw module 27–8, 31–2

app object 53–5
multi query() function

36–8

multi selection list()
function 43–4

note() function 35–6
popup menu() function

40–1
query() function 33–5
selection list() function

41–3
uid() function 283

ArduinoBT micro-controller board
261–6

asynchronous communication
188–92

audio module
functions 83–4
open() function 78–9
play() function 78–9, 81–2,

83
record() function 81, 82, 83
say() function 78
stop() function 80, 81, 82,

83
automatic updating 236–8

binding
bind() function 54, 69, 88,

139
keycodes to callback functions

86–8

blit() function 92, 95, 96, 104,
206

Bluetooth
client–server chat application

138–41
connecting to external GPS

reader 148–50
connecting to other devices

150–1
creating Bluetooth servers

144–6
Max/MSP connection using

RFCOMM 266–71
serial port, setting up 289–92
using the Bluetooth console

292–3
break statement 45
bugs, finding 298–9

callback functions 54–5, 69, 79
binding to keycodes 86–8
capturing key events 91–2
event callback() function

88–91
redraw callback() function

92–5
camera

functions 100–1
taking a photo 102–4
viewfinder 101–2

322 INDEX

Canvas object 85–6
bind() function 54, 69, 88,

139
blit() function 92, 95, 96,

104, 206
double buffering 106
event callback parameter

88–9
redraw callback parameter

92, 94, 95
size() function 94–5

capabilities, Platform Security
280–2

certificates see devcerts
(developer certificates)

C++ extensions 236
chat application 138–41
client–server applications

MobiLenin 245–52
voting service 179–82

code blocks, writing 28–9
coding styles 241–3
color

hexadecimal constants 94
specified as Unicode strings 42

communication protocols 166–7
default access point, setting

172
HTTP client 169–70
JSON client 170–1
TCP client 167–9
TCP/IP 159

concurrent programs 241
connect() function 139, 168,

190, 269
contacts module 151–2
Content handler object 60,

157, 213
content() function 65–6
continuation lines 29
conversions

plain to Unicode text 121
type 36, 60, 63, 64, 72, 140,

144, 203
custom modules 234–6

databases
contacts database 151–2

Eventfu application 207–15
local database 121–3
MySQL database 261

data encoding using JSON
166–7, 170–1, 174

data handling 111–12
basic file operations 114–16
dictionary data structure

118–20
error handling 113–14
file organization 112–13
finding sound, photo and video

files 116–17
local database 121–3
log files 116
reading and writing text

117–18
reading and writing Unicode text

120–1
debugging 295

interpreting tracebacks 295–7
logging output to file 116
procedure for 298–9

decode("utf-8") function
121

default access point, setting 172
def keyword 51
deployment of PyS60 programs

287
devcerts (developer certificates)

capabilities 280, 281–2,
283

obtaining 285–6
signing with 284, 285

dial() function 151, 152
dialog functions 27–8

multi-query dialog 36–8
note dialog 35–6
single-field dialog, query 33–5

dictionary object 118–19
constructing 230–1
event object 88–9
JSON client 170–1, 174
JSON gateway 185, 186
and local databases 121–3
reading contents from a file

120
writing contents to a file

119–20

directories 112–13
creating 113
protected 282–3

dot notation 56
double buffering 92, 106
download plugin() function

238–9
drawing functions 95
drive letters 113
dynamic time 105–6
e32dbm module 122–3
e32db module 121
e32 module 54

lock object 55, 56, 69, 79,
105

sleep() function 105–6,
110, 182

timer object 97, 125–6,
211–13, 214–15, 240

yield() function 99, 106

empty value 36
emulator, using 30, 301–2
encoding

Unicode strings 34–5, 121,
129, 211, 213

urllib.urlencode()
function 204

using JSON 166–7, 170–1,
174

errors
see also debugging
during installation 29–30
exception handling 113–14,

296–7
event callback() function

88
event dictionary 88–9
Eventfu application 207–9

access point dialog 214
constants, setting up 209–10
description of event 214
event form 208, 213
preferences form 208, 209–10
storing preferences 210–11
UI functions 214–15
updating events 211–13

event handling functions 91

INDEX 323

event loops 105
events database see Eventfu

application
exception handling 113–14,

296–7

File object 114–16
file organization 112–13
file system protection 282–3
find() function 61, 62, 66
for loop 44–5
flickering, reducing by double

buffering 106
Flickr see InstaFlickr application
functions, creating own 49–52

games
controlling with event loops

105
double buffering 106
dynamic time 105–6
guess my number 145–6
Hangman server 70–6
Manhattan Story Mashup

252–6
random number generation

106
structure of 104–6
UFO Zapper 104, 106–10

glcanvas and gles modules, 3D
graphics 99

global variables 72–3, 83, 231,
235–6

GPS positioning
external GPS over Bluetooth

148–50
using position module

127
graphical user interface

customizing, Max/MSP
connection 268–9

native elements of PyS60
31–45

graphics 92
3-dimensional 99–100
drawing graphics primitives

92–5

interactive 97–9
GSM positioning 123–6

hang up() function 151
Hangman server game 70–6
”Hello World” script, writing

2nd Edition devices 25–7
3rd Edition devices

Linux Users 20–1
MAC OS X Users 19
Windows Users 15–18

httplib module 157
HTTP server 174–7
HyperTerminal, Windows 292–3

if statement 38–9
image composition tool 256–61
image files

see also photos
reading 117
uploading to Web 223,

259–61
image masks 96
Image object 92, 106

blit() function 92, 95, 96,
104, 206

drawing graphics primitives
92–5

loading and saving images 96
map images 203–5
MobileArtBlog 257–60
taking screenshots 96–7
viewfinder images 101–2

importing modules
import () function 239

import statement 32
Inbox object 64–5

accessing messages 65
bind() function 69
forwarding messages 69–70
receiving messages 68–9
searching for messages 66
sms messages() function

65, 66, 67, 228, 229
sorting messages 66–8

indentation of code 28–9
innovation 3

democratizing 8–11
sharing of 9–10
user-centered 9

input verification 62–3
InstaFlickr application 215–16

constants 216–17
data uploading 221–2
progress bar 223–4
result parsing 217
signed calls 219–21
taking photos 222–3
token handling 217–19
UI functions 224

installation of PyS60 13–14
2nd Edition devices 21

downloading install files
21–2, 301–2

installing files to phone 25
sending files to phone 22–5
writing and running a script

25–7
3rd Edition devices

downloading install files
14–15, 301–2

Linux users 19–21
Mac OS X users 18–19
Windows Users 15–18

instant messaging 188–92
interactive graphics 97–9
Internet 159

see also web services
automatic updating 236–8
communication protocols

166–72
connecting to 158–65
downloading data from 156–7,

238–9
plug-in mechanisms 238–9
uploading data to 157–8,

221–2
interpreter for Python 7–8

downloading and installing
301–2

signing with a devcert 285
introspection 231–4
IP addresses 159

local IP address 162
phone’s IP address 178
finding server 163

324 INDEX

join() function 72
JSON (JavaScript Object Notation)

166–7
installing JSON module

159–60
JSON client 170–1
JSON gateway 184–8
JSON server 173–4

keyboard keys 84–6
binding keycodes to callback

functions 86–8
capturing key events 91–2
event callback() function

88–9
key pressed or held down

89–91
keycapture module 91–2
keycodes 86–91
key code module 86–91
key events 50, 84–5

capturing 50, 88–90, 91–2
handling 85–6, 88–9

key–value pairs 88–9, 118–20

language tool application
127–30

lead users 5
development of products 10
innovation by 8–9
motivation of 9

len() function 61
Linux users

installing PyS60 files 19–20,
24–5

IP addresses, finding 162
RFCOMM setup 291–2
writing first script 20–1

list comprehensions 228–30
lists 39

list comprehensions 228–30
multi-selection list 43–4
selection list 41–3
tuples 56–7

local database 121–3
local variables 72–3
location application 124–6

lock object 55, 56, 69, 79, 105
loops

for loop 44–5
while loop 45

lower() function 62

MAC OS X users
AppleScript, controlling

applications with 146–8
installing PyS60 files 18, 23–4
IP addresses, finding 162
RFCOMM setup 290–1
writing first script 19

makedirs() function 113
makefile() function 140, 144,

168–9
Manhattan Story Mashup 252–6
map explorer application see

MopyMaps! application
masks, image 96
Max/MSP, controlling with a phone

266
Bluetooth RFCOMM connection

266–71
WiFi connection 271–3

menus
application menu 56, 58–9
popup menus 40–1

messages
accessing 65
receiving 68–9
searching 66, 228–30
sending 45–7
sorting 66–8

messaging module 45–7, 64,
70, 71–2, 74

micro-controller board, connecting
phone to 261–6

MIDI files, playing 79–80
missing values, denoting 36
MobileArtBlog 256–7

client code 257–60
inserting data into MySQL

database 261
server-side PHP script 260–1

mobile networking 155–6
communication protocols

166–7

HTTP client 169–70
JSON client 170–1
setting default access point

172
TCP client 167–9

development environment,
setting up 158–62

downloading from the Web
156–7

networking environments
160–2

peer-to-peer networking
183–8

testing network connection
162–5

uploading to the Web 157–8
MobiLenin system 245–6

mobile client code 249–52
system architecture 246–9

Mobile Web Server (MWS) 193
modules

creating custom 234–6
importing on the fly 238–9
using built-in 31–2

MopyMaps! application 201–2
constants 202–3
fetching map images 203–5
result parsing 203
UI functions 205–7

MP3 files, playing 78–9
multi-query dialog 36–8
multi-selection list 43–4
multi-user applications 252,

273–4
music video voting application

245–52
MySQL database, inserting data

into 261

National Marine Electronics
Association (NMEA) 148–9

native UI elements 31
multi-query dialog 36–8
multi-selection list 43–4
note 35–6
popup menu 40–1
query 33–5
selection list 41–3

INDEX 325

networking environments 158,
160–1

finding local and server IP
addresses 162–3

local wireless network 161
phone Internet access

and external test server
161–2, 163

and external web server
162, 163

and PC as a server 161, 163
setting default access point 172
testing connection using a test

server 163–5
Nokia phone models 302
None, empty value 36
note dialog 27–8, 35–6

OBject EXchange (OBEX) 134–8
objects 55–6
OpenGL graphics API 99–100
OpenSound Control (OSC)

273–4
open-source 5, 6, 7
operating systems 6
OSC see OpenSound Control
OSCmobile module 273–4
os module

makedirs() function
path.exists() function

113
remove() function 81
system() function 147

output formatting 63–4

packages
creating standalone 286–7
running under Platform Security

287–8
signing 284–6

parameters, function 28, 51
pass statement 130
pausing execution see sleep()

function
PC, controlling remotely 146–8
PC to phone communication

141–8

peer-to-peer networking 183–4
instant messaging 199–91
JSON gateway 184–8

phone calls, recording 83
phone to PC communication

141–2
AppleScript, controlling

applications with 146–8
communicating with the PC

142–4
PySerial, creating Bluetooth

Servers with 144–6
phone to phone communication

136
using OBEX 136–8
using RFCOMM 138–41

phone providing a web service
193–7

phone-as-server, drawbacks of
177–9

photos
InstaFlickr application 215–24
Manhattan Story Mashup

252–6
MobileArtBlog 256–61
sending 136–8
taking 102–4

PHP script 158, 249, 252,
259–61

placeholders 63
plain text, conversion to Unicode

121
Platform Security 279–80

capabilities 280–2
file system protection 282–3
running PyS60 under 287–8
SIS package signing 284–7

play() function 78–9, 81–2,
83

plug-in mechanism, automatic
updating 238–9

popup menus 40–1
popup notes 27–8, 35–6
positioning 123

GPS positioning 127, 148–50
GSM cell ID mapper 123–6

position module 127
preferences, storing 210–11
print statement 43

for writing to a file 115, 116
private directory 116, 283
program patterns 239–41
prototyping with PyS60 1, 5, 7,

10–11
proxy server, phone as 194–5
py2sis tool 286–7
PySerial module, creating

Bluetooth servers 133–6
Python programming language 7,

8
Python for S60 (PyS60) 1–2,

7–8
see also installation of PyS60
automatic updating 236–8
coding styles 241–3
deployment of 288
distribution of 288
extending using Symbian C++

236
potential users 5–6
rapid prototyping tool 10–11
reasons for using 3–4
toolkit 10
writing first program 27–8

query() function 27–8, 33–5
quit() function 54

random number functions 106,
108, 145

range() function 44–5
read() function 116, 117
recording sounds 80–3
redraw callback() function

86, 92, 206
relational databases see

databases
remote control of PC 146–8
replace() function 62
resource directory 283
return values, functions 51
RFCOMM

phone-to-phone communication
138–41

serial port, setting up 289–92
RGB colors 94

326 INDEX

robotics 274–7
Roomba robotic vacuum cleaner

275–7

S60 software platform 6–7,
302

scancodes 86–7, 89
scope of variables 72–3
screenshots, taking 96–7
screen size 59, 60
security see Platform Security
selection list 41–2
self-signed certificates, creating

284
serial communication, setting up

289–92
Serial object 145, 146
server software 172–3

HTTP server 174–7
JSON server 173–4
running on a phone 177–9

shopping list assistant program
46–7

signal() function 55
signing see SIS package signing
single-field dialog 33–5
SIS package signing 284

developer certificates (devcerts)
285–6

keys and certificates, creating
284

signing PyS60 interpreter with a
devcert 285

standalone packages, creating
286–7

sleep() function 105–6, 110,
182

smartphones 3
sms messages() function 65,

66, 67, 228, 229
SMS game server application

70–6
SMS messages

Hangman game application
70–6

sending messages 45–7
SMS inbox 64–5

accessing 65

forwarding messages 69–70
receiving messages 68–9
searching 66
sorting 66–8

socket module 172, 177–8
SocketServer module 163–5,

174, 185–6
sort() function 66–8
sound

playing MIDI files 79–80
playing MP3 files 78–9
reading files 117
recording 80–3, 129, 151
text-to-speech functionality

77–8
source code, sharing of 9–10
split() function 63, 64
standalone programs, creating

286–7
start viewfinder() function

102
startswith() function 62
state() function, audio module

84
str() function 36
string handling

accessing parts of a string 61
cleaning up input strings 62–3
decision-making functions

61–2
defining strings 60–1
formatting output 63–4

strip() function 62
substrings 61–2
Symbian C++, extending Python

236
Symbian OS 6–7

Platform Security 279–80
SIS file signing 284–6

symbol tables 231–4
synchronous communication

138
sysinfo module 152–3
system directory 282–3
system information 152–3

tabs, defining 59
take photo() function 102–3,

128, 137, 157, 196, 222–3

TCP/IP 159, 166–7
Max/MSP 271–3
TCP client 167–9

telephone module 151–2
terminal emulator software, using

144, 301–2
terminology 7–8
text editors 15, 19, 20, 25, 29
text reading/writing

dictionary key–value pairs
118–20

list items 117–18
Unicode strings 120–1

text-to-speech functionality 77–8
threading 185–92, 212, 241
time

current time 126, 171, 213
dynamic time 105–6
time() function 68

timer object 97, 126, 211–13,
214–15, 240

toolkit for PyS60 10
tracebacks, interpreting

295–7
translation application 127–30
troubleshooting

see also debugging
installation problems 29–30

try–except block 113–14
tuples 56–9
type conversions 36, 60, 63, 64,

72, 140, 144
type parameters 33–4

UFO Zapper game 106–10
Unicode strings

encoding and decoding 34–5,
121, 129, 211, 213

reading and writing 120–1
unread() function 68
upper() function 62
urban storytelling game 252–6
urllib module 156–7, 170,

171, 200, 204
user interface (UI)

see also appuifw module
custom elements 254–6,

268–9

INDEX 327

native elements 31–45
structure of 52–3

UTF-8 encoding/decoding 121,
129, 211, 213

vacuum cleaner robot 275–7
variables 36–3, 72–3
video files, reading 117
viewfinder 101–2, 103
Vocabulector language-learning

tool 127
adding new entries 127–9
boilerplate text 130–1
displaying entries 129–30

von Hippel, Eric 8–10
voter application 63–4
voting service, client–server

179–82

wait() function 55
WAV files, recording 80–3
web server, using phone as

193–7
web services (Web APIs) 199

see also Internet
application keys 199, 207, 217
EventFu event finder 207–15
InstaFlickr photo uploader

215–24
MopyMaps! mobile map

explorer 201–7
Representational State Transfer

(REST) 200–1
using Web APIs 200

while loop 45
white space 28–9
WiFi

connecting phone to Max/MSP
271–3

instant messenger application
188–92

security risks 220
testing connection to wireless

network 162
Windows users

installing PyS60 files 15, 22–3
IP addresses, finding 162
RFCOMM serial port, setting up

290
writing first script 15–18

write() function 115

XML parsers 203, 216–17

Yahoo! Maps 201–7
yield() function 99, 106

